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Abstract

As humans are familiar with animal movement, a realistic animal an-

imation must imitate this motion. This thesis explores how observations

of natural evolution and evolutionary computation can be used to pro-

duce realistic quadrupedal animal animations, focusing on the grammar-

based Genetic Programming method of Grammatical Evolution (GE).

A cross-discipline review of animation systems, biological knowledge

and natural computing techniques applicable to animal animation is pre-

sented. Focusing on the horse, the construction of both a kinematic and

physics-based model is described. The origins and representations of the

data used to construct and animate these models are also discussed.

GE is applied to animation problems for the first time. Animat-

ing physics-based models is complex and a GE motion optimisation sys-

tem successfully generates realistic, stable motions. Additionally, simple

grammars with little domain knowledge generate novel movement.

For herd scenes, a GE-based system generates models of varying mor-

phology and automatically optimises motion data for them. GE also

evolves motion adjuster functions that dynamically modify limb move-

ment based on the model’s velocity. These functions are used in a real-

time controllable kinematic animation system, in which a horse model

moves with an accurate gait and executes gait transitions when necessary.

Overall, the use of GE and natural world observations is found to

facilitate the generation of realistic quadrupedal animal animations.
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EuroGP 2009, pages 183-194, Tübingen, Germany, April, 2009.

Springer.

3. James E. Murphy, Michael O’Neill and Hamish Carr. Gait optimi-

sation for distinct horse models using Grammatical Evolution. In

Proceedings of the 15th International Conference on Soft Comput-

ing, 2009. MENDEL 2009, pages 1-8, Brno, Czech Republic, June,

2009.

4. James E. Murphy, Hamish Carr and Michael O’Neill. Animating

horse gaits and transitions. In Proceedings of the Eurographics UK

Symposium on Theory & Practice of Computer Graphics, 2010.

TPCG 2010, pages 215-222, Sheffield, England, September, 2010.

Eurographics.

xix



Chapter 1

Introduction

Quadruped animals such as dogs and horses are ubiquitous in our every-

day lives and as such there is a large demand for animations of them in

films, video games and advertisements. As humans, we are highly famil-

iar with the motion of these animals both through direct interaction and

from observing videos of their motion.

As such, if an animated animal does not exhibit motions equivalent

to its real-life animal counterpart, this incongruity will be noticed by

the viewers. In some situations, unrealistic stylised motion is deliberate

and provides an effective break from reality. In other situations however,

this lack of realism is unintentional and undesirable. In these situations,

the viewers may consciously or unconsciously identify the inconsistency

between the animated animal’s motion and what would be observed in

the real-world. The animation’s illusion of reality is thus compromised

and its overall effectiveness is diminished.

The objective of this thesis is to explore ways in which computer

generated animations of quadrupedal, or four-legged, animals can be im-
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proved in terms of realism, using Grammatical Evolution (GE).

We specifically focus on how the motion data used to animate quadruped

models can be acquired. With this goal in mind, we investigate how ob-

servations of biology and natural evolution can be exploited to generate

motion data using GE, an evolutionary computation technique. As such,

the work presented in this thesis spans both the biology and computer

animation fields. In addition to this, a third field known as natural com-

puting, from which GE originates, is also explored.

Natural computing techniques comprise a wide range of human-designed

computing systems inspired by natural processes. It would seem appro-

priate to examine the use of these systems for the computer generation

of animal motion. We focus on evolutionary computation techniques,

specifically GE, which simulate evolving populations of solutions over a

number of generations, guided by a fitness function towards some goal.

These evolutionary computation approaches are inspired by the bi-

ological mechanisms of natural evolution. As the motion of an animal

is the product of millions of years of evolution, it appears appropriate

to apply these techniques to the problem of motion data production for

animal animations.

In this thesis we thoroughly explore those aspects of biology that

can be exploited for animation purposes. Focusing on the horse, several

animation systems are described. As will be discussed, motion data

pertaining to a real-life animal must be available if realism is an objective

of an animation. As this motion data can be difficult to acquire, we

explore different ways to use a small amount of data to produce a diverse

range of animal animations.
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For this purpose, we employ GE in a variety of experiments, the re-

sults of which are presented and discussed in this thesis. GE is chosen as

it can evolve the structure of entire programs, rather than simply opti-

mise a fixed set of parameters. Additionally, the grammar-based nature

of GE means that complex problem domains can be easily represented

through a grammar. The output phenotype structures are also human

readable, which, if examined, may yield useful information about the

problem domain.

In this chapter, our research aims are quantified into a set of thesis ob-

jectives and research questions in Section 1.1. In Section 1.2 the primary

contributions of the thesis are summarised. Due to the multidisciplinary

nature of the presented work, certain decisions must be made regarding

scope and implementation; for each involved discipline, the correspond-

ing decisions are summarised in Section 1.3. As a consequence of these

decisions, the limitations of the thesis are described in Section 1.4. Sup-

plementary to the primary contributions listed in Section 1.2, a list of

secondary contributions including the data assembled and the developed

applications and techniques are presented in Section 1.5. In the final

section of this chapter, the structure of the thesis is outlined.

1.1 Research aims

The overall goal of the work presented in this thesis is to develop ways

in which the realism of animal animations can be improved using GE. In

order to clarify the aims of our research, it is important to define what

we mean by realism in terms of animal animation.
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In this thesis, an animal animation is considered realistic if it de-

picts an animal model whose morphology closely matches its real-life

equivalent. The structure and proportions of the model are of utmost

importance, whilst other aesthetic considerations are less of a concern.

In addition to structure, the model’s motion must match that of a

real-life animal. In terms of locomotion, the model must translate across

a scene at an appropriate rate and that translation must appear to be

caused by the interaction of the model’s limbs with the ground. The

sequence in which the limbs move, known as a gait pattern, must also be

selected to correspond with the model’s velocity.

At a lower level, the motion of the individual bones in each limb must

move with respect to the real-life animal’s physical constraints and be

consistent with how an animal moves its bones for its various gaits.

1.1.1 Research questions

The ultimate goal of this thesis is to explore how observations of natural

evolution and evolutionary computation can be used to produce realistic

quadrupedal animal animations, specifically focusing on the grammar-

based Genetic Programming method of Grammatical Evolution.

To address this goal, answers to the four research questions listed be-

low are actively sought through research, development, experimentation

and analysis.
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1. Can GE be used to optimise motion data for a physics-based quadruped

model?

2. Can GE be used to retarget motion data from one physics-based

quadruped model to another model of a different species?

3. Can GE be used to optimise motion data for multiple physics-based

quadruped models of differing skeletal proportions for the animation

of herd scenes?

4. Can GE be used to evolve functions that can dynamically adjust a

kinematic model’s motion based on its velocity and observations of

natural locomotion?

In response to these research questions, the main contributions of this

thesis are summarised in the following section.

1.2 Primary contributions

Throughout the research process, many animation applications and sys-

tems have been developed and used for experimentation. Each major

experimental component is separately published, as presented in the Pub-

lications Arising list on page xix.

The following are the primary contributions of this thesis.

Animation literature review

The development of quadrupedal animation systems and related

techniques over the past 30 years is described in Section 2.4 with

details given of seminal animation systems.
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Optimisation and biologically inspired algorithms for gait gen-

eration literature review

The use of optimisation techniques and biologically inspired algo-

rithms to generate gaits for biped and quadruped computer con-

structed models, and multi-legged robots is described in Section

2.4.2.

A number of contributions are made as a consequence of addressing the

research questions listed in the previous section. These contributions are

described below.

1. Can GE be used to optimise motion data for a physics-based quadruped

model?

(a) Automatic physics-based motion data optimisation

A GE-based system for optimising motion data for a physics-

based quadruped model is presented in Chapter 8 and is pub-

lished [134].

Of all the evolutionary computation methods, Genetic Algo-

rithms (GA) are most commonly applied to motion data op-

timisation problems [73]. Our aim is to explore the use of

Genetic Programming (GP), specifically GE, for the genera-

tion of motion data.

A GP technique’s ability to evolve the structure of a solution,

rather than optimise a fixed set of parameters as in GA, deem

it worthy of investigation for this class of problem. In addition,

recent research indicates that GP techniques perform well if

not better at certain motion generation problems [175].
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The system presented in this thesis signifies the first time GE

has been applied to an animation problem, specifically that of

motion generation. In this system a GE implementation con-

trols the evolutionary search while a physics-based quadruped

simulation application acts as the fitness function.

Animating physics-based quadruped animal models is a chal-

lenging issue in computer animation. The motion data op-

timised by GE moves a physics-based quadruped model in a

realistic and stable manner.

(b) Measured motion data

The issue of the inclusion of domain knowledge into the gait

generation approach, in the form of motion data measured

from a real-life animal, is also tackled in Chapter 8 and is

published [134].

The question of domain knowledge inclusion and optimal AI

ratio in GP is open [151]. We compare grammars that opti-

mise motion data and grammars that are free to evolve novel

motion. Some of the free-style grammars have no domain

knowledge whatsoever and others have knowledge of an ani-

mal’s muscles implicitly included in the grammar.

Those grammars that optimise motion data produce highly

realistic, physics-based animal motions. The free-style gram-

mars in comparison produce unique motions that allow the

model to locomote at a high rate of speed, albeit without

regard for the physical limits of the real-life animal. In the
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grammars which implicitly include muscle information, many

of the motions produced are comparable to that of a horse. A

more sophisticated fitness function may further improve these

results.

It is concluded that for realistic motion, domain knowledge

must be included to some degree.

(c) Rate of evolution

In an evolutionary system, modularly varying goals can speed

up the evolutionary process [98]. Inspired by this finding, we

explore how the rate of an evolution can be affected through

two experiments, presented in Chapter 8 and published [134].

We investigate whether generationally varying the weights of

the fitness function components can replicate this speed-up

phenomenon. In an expansion of this idea, the generational

locking and unlocking of joints in the quadruped model is also

explored.

Speed-up is only observed locally in the varying fitness func-

tion experiment and not at all in the joint locking experiment.

In the latter experiment however, the number of valid, stable-

motion yielding phenotypes produced from the earliest gener-

ations is greatly increased through the limiting of joint motion

at the start of an evolution.

(d) Terrain

In the final experiment presented in Chapter 8, terrain traver-

sal is briefly explored. The manner in which a model traverses
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uneven terrain is another difficult and open issue for physics-

based animal models. In response to this problem we employ a

GE-based system to generate the motion required to traverse

a simple terrain.

The result is impressive as an optimised motion allows the

horse model to traverse a terrain at approximately twice the

speed of a model whose motion is optimised for a flat running

surface. This result demonstrates GE’s potential to evolve

more sophisticated terrain motion controllers for physics-based

animal models and even robots.

2. Can GE be used to retarget motion data from one physics-based

quadruped model to another model of a different species?

Interspecies motion retargeting

A GE-based system for retargeting motion data measured from

one animal to an animal model of another species is presented in

Section 9.1 and published [132].

The retargeting of motions between characters often requires much

adaptation and adjustment. This “motion retargeting problem”,

as it is dubbed, remains a topic of much research [71, 128, 83].

The retargeting system presented in this thesis represents the first

time an evolutionary computation technique has been applied to

a quadruped model motion data retargeting problem. The system

uses a GE implementation and quadruped simulation application

to evolve motion data through a series of hybrid models towards a

target animal model.
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Both a discrete and continuous evolution system are described and

experiments involving a horse to dog retargeting are presented. The

retargeting attempts are found to be unsatisfactory mainly due to

the large number of variables involved and inaccuracies of the joint-

torque calculations in the hybrid models.

3. Can GE be used to optimise motion data for multiple physics-based

quadruped models of differing skeletal proportions for the animation

of herd scenes?

Multiple models

A GE-based system for generating motion data for multiple auto-

matically generated quadruped models of differing skeletal propor-

tions is presented in Section 9.2 and published [135].

Using a GE implementation and a quadruped simulation appli-

cation which generates models from allometric data and acts as

a fitness function, physics-based horse models of differing propor-

tions are generated based on an age parameter and animated using

evolved motion data.

Sequential and parallel approaches to model parameter and mo-

tion data optimisation are also explored. The sequential approach

to model parameter optimisation is found to be best and GE is

successful at generating motion data for multiple differing models

in a herd scene.
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4. Can GE be used to evolve functions that can dynamically adjust a

kinematic model’s motion based on its velocity and observations of

natural locomotion?

Kinematic gait and transition animation system

Research is ongoing on the use of GP techniques for the evolution

of controllers for various problems [2, 64]. A GE-based system for

evolving functions which dynamically alter a model’s motion pat-

tern based on its velocity is presented in Chapter 10 and published

[133].

This is the first occasion that GE has been employed for the gener-

ation of dynamic motion controllers. These motion adjuster func-

tions are evolved for use in a kinematic quadruped animation sys-

tem which animates a model with gaits and transitions determined

by a user-controlled velocity parameter.

The GE-evolved dynamic adjusters are found to increase the real-

ism of an animation by allowing a model’s limb extents to reflect

those observed in nature.

1.3 Research and implementation decisions

In tackling the research questions presented in the previous section, sev-

eral additional implementation questions are raised regarding aspects of

each of the three disciplines involved in this research.

Many of these questions (listed below) would be interesting research

questions in their own right, however, for the purposes of this thesis,
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decisions on technique and implementation are made based on findings

in the literature and often short periods of experimentation.

1. Animation

(a) Which animation methods can be used for animal animation?

(b) How can animal models be represented, constructed and ani-

mated?

(c) What is the best source of motion data for animations?

(d) How can motion data be intuitively represented for animation

systems?

(e) Can motion data be manually generated or optimised?

2. Biology

(a) Which aspects of an animal’s musculoskeletal system are most

important when creating an animation?

(b) What aspects of dynamic similarity theory can be exploited for

animation purposes?

3. Natural computing

(a) How can motion data be represented in a GE grammar?

(b) What type of fitness function can be used to evaluate an animal

model’s motion?

(c) Are multivariable fitness functions viable for motion genera-

tion problems?
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(d) How does the size of the search space affect the quality of gen-

erated motion data?

(e) Would human involvement through an interactive fitness func-

tion assist a motion generation problem?

(f) Could use of a multi-objective evolutionary algorithm be of

benefit for motion data optimisation?

The questions raised here shall be discussed in the relevant sections

of this thesis. The implementation decisions made limit the scope of the

research and provide a definite problem domain in which evolutionary

computation techniques can be explored. In the following section, the

scope limitations are presented.

1.4 Limitations

The following subsections list the limitations of this thesis. As the re-

search involves three distinct disciplines, some significant simplifications

are required. These simplifications, limitations and implementation de-

cisions are described below.

Animation

• The quadrupedal animation literature review focuses on animation

systems that are not entirely reliant on motion capture yet aim to

produce realistic motion.

• The principle goal of our animation systems is to produce realistic

motion. Issues such as aesthetics of the model are a secondary
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consideration. As such, matters such as surface deformations due to

muscle motion are not addressed. Additionally, skinning techniques

are briefly mentioned yet are not discussed in any detail.

• The animation techniques described in this thesis rely on Open

Graphics Language (OpenGL) for the graphical rendering. An in-

depth discussion on how three-dimensional computer graphics are

created is not provided.

• Similarly, our use of the Open Dynamics Engine (ODE) is not de-

scribed in any detail as the physics-based model construction pro-

cess could be applicable to other physics engines.

• The physics-based horse model is essentially an open-loop model;

the motion of its limbs and neck is computed without regard for

environmental feedback. The balancing system however, utilises

some feedback as the tilt of the model’s trunk determines the minor

correcting forces that are applied to the model.

• The terrain traversal experiments are limited to a single terrain as

a proof of concept. Feedback loops and dynamic motion controllers

are not utilised.

Biology

• Horse biology information is limited to that of direct use to an-

imators. For example, knowledge and data pertaining to animal

conformation and allometry is limited to that which can be used

to determine the proportions of a computer constructed model.
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• Dynamic similarity theory is fundamental to many of the presented

experiments, however, related issues such as cost of transport and

metabolic processes are not discussed.

• An introduction to genetic processes is provided in Appendix Sec-

tion A.1.1. The description of some of the processes is simplified

and details of chemical composition and variation are not included.

Natural computing

• Low-level details such as choice of evolutionary search parameters

are not addressed in this thesis. A set of general parameters are

chosen based on the literature and recommendations from other

GE practitioners.

• In the gait generation and optimisation literature review, the robotics

papers mentioned present research which is of particular interest to

our motion generation experiments. Motion optimisation is a large

topic of research in the robotics field and GAs are the most popu-

larly used evolutionary algorithm. Rather than provide an in-depth

review of robotics research, the referenced papers highlight the va-

riety of optimisation techniques applied to the motion optimisation

problem.

1.5 Secondary contributions

The experimental systems described in the Primary contributions section

comprise multiple animation applications. While these applications of-
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ten act as fitness functions within an optimisation system, they are also

standalone programs capable of producing animations, and therefore sig-

nificant contributions in their own right.

The experimental systems also exploit knowledge and techniques from

the biology and animation fields respectively. The assembly of this bi-

ological knowledge and development of these animation techniques are

also considered to be significant contributions and are included in the

following list of secondary contributions of this thesis.

1.5.1 Background research

Equine information and data

Detailed information is assembled pertaining to horse model con-

struction and animation. The structure and motion of the equine

musculoskeletal system is described in great detail in Section 4.3

and a simplified horse skeleton which can be directly used to cre-

ate an articulated model is presented in Section 5.1.2. The natural

gaits of the horse are also described in detail in Section 4.4.

1.5.2 Applications developed

Curve Modifier Application (CMA)

An application designed to aid the manual and automatic kinematic

motion generation process is presented in Section 7.1. The appli-

cation provides visualisations and dynamic similarity-based motion

scoring to evaluate motion data.
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Motion Data Development Environment (MDDE)

An application designed to aid the manual physics-based motion

generation process is presented in Section 7.2. This application

simulates and animates a quadruped model and provides the user

with a rich selection of scene navigation controls and adjustable

simulation and model parameters. Motion data can be edited and

evaluated in real-time using the configurable, interactive visualisa-

tions.

Physics-based Quadruped Simulation (PQS)

An application which simulates a physics-based quadruped model

in motion and scores input motion data based on gait characteristic

predictions and energy efficiency is presented in Section 8.1.2.

Variable Morphologies System (VMS)

An extension of the PQS called the VMS is described in Section

9.2.2. The VMS takes allometric data as input and can calculate,

construct and animate a physics-based quadruped model with body

proportions determined by a user-specified age.

Kinematic Gait Transition System (KGTS)

A kinematic animation system that animates a quadruped model

using the correct gaits and transitions for that model’s velocity is

described in Section 10.3. The system dynamically modifies the

supplied motion data to exhibit highly realistic motion based on a

velocity parameter specified by a hardware controller.
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1.5.3 Animation techniques and data representations

Kinematic horse model construction

A method for constructing and animating a hierarchical kinematic

horse model with OpenGL is presented in Section 5.2.

Physics-based horse model construction

A method for constructing and animating a physics-based horse

model with OpenGL and ODE is presented in Section 5.3 and fur-

ther detail is provided in Appendix Section B.1.4.

Horse model file format

A bespoke file format which contains the skeletal and positioning

data from which the kinematic and physics-based horse models can

be constructed is presented in Appendix Section B.1.2.

Sinusoidal motion data representation

A motion data representation based on a summation of sinusoids

is presented in Section 6.2.1. A Fourier decomposition and simpli-

fication process for converting discrete value motion data to this

representation is also presented.

Piecewise motion data representation

A motion data representation based on a sequential description of

curve segments is presented in Section 6.2.2.

Each of these secondary contributions are referred to and employed through-

out the thesis, the structure of which is described next.
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1.6 Structure of thesis

This thesis is divided into four parts, not including this chapter, which

present related work, construction and animation techniques, experi-

ments and conclusions respectively.

Part I: Related work

In Part I, all of the related work for the thesis is presented.

This part is divided into three chapters; animation, natural comput-

ing and biology. The animation related work chapter introduces kine-

matic and physics-based animation techniques. Also provided is a re-

view of the animation literature, in which seminal animation systems are

described.

In Chapter 3, aspects of natural computing are discussed. Biologi-

cally inspired algorithms and evolutionary computation methods are in-

troduced followed by a detailed introduction to Genetic Algorithms, Ge-

netic Programming and Grammatical Evolution. This chapter frequently

refers to natural genetic processes and for readers unfamiliar with genetic

terminology, there is a detailed introduction to genetics provided in Ap-

pendix Section A.1.

The final chapter of Part I discusses some biological knowledge that

can be exploited for the creation of realistic animal animations. Al-

though the research presented in this thesis is generally applicable to

quadrupedal animal models, the experiments and data relate to the horse.

The chapter begins with a description of equine evolution, breeding

and conformation. Following on from this, relevant aspects of the horse’s
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anatomy are discussed and then the musculoskeletal system is described

in detail. The movement of the horse, in particular its gaits and transi-

tions, are then discussed followed by a final section on dynamic similarity.

This chapter contains highly detailed information regarding horse

morphology and behaviour which is employed for animation purposes

at points throughout the thesis. The chapter itself can therefore be

viewed as an information source for the production of realistic animal

animations.

Part II: Model creation and manual gait generation

In this part, the computer construction and animation of horse models

is described.

In the first chapter, the origins of data that can be used for model

construction are discussed. Two different horse model construction and

animation methods are then described; kinematic and physics-based. In

Chapter 6, the gait motion data which is used to animate these models

is described in terms of its origins and representations.

In the final chapter of Part II, the manual adjustment of motion data

is described. Two motion data development applications are presented;

one for kinematic animations and the other for physics-based. This chap-

ter concludes with a description of how the physics-based horse model

described in Chapter 5 is animated using the gait motion data discussed

in Chapter 6, after a laborious manual motion data and model parameter

tuning process.

This manual experience motivates the need for the automatic motion

data optimisation solutions presented in the following part.
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Part III: Experiments with GE

Part III comprises three chapters detailing the automatic motion opti-

misation systems and experimental findings summarised previously in

Section 1.2.

Part IV: Conclusions

In the final part of this thesis, the work presented is summarised and con-

clusions are drawn. The research- and implementation-questions raised

in Chapter 1 are briefly answered based on the findings and conclusions

made throughout the previous parts. In the final section, the thesis con-

cludes with a discussion of potential future research directions.

Note: a glossary of biological terms is provided immediately following

this final part, starting on page 313.
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Related work
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In Part I of this thesis, three distinct areas of research are separately

introduced, namely animation, natural computing and biology. Knowl-

edge and techniques from each of these fields are involved in our explo-

ration of how evolutionary observations and computation techniques can

be exploited for the production of realistic quadrupedal animations.

In Chapter 2, computer animation techniques are discussed and some

influential animal animation systems are described, including those which

utilise evolutionary-based optimisation methods.

Following on from this, Chapter 3 provides an introduction to several

popular evolutionary computation techniques and explains why Gram-

matical Evolution is chosen for the experiments presented in this thesis.

Finally, Chapter 4 describes areas of biology that can be exploited

when creating realistic animal animations. The chapter includes a de-

scription of equine evolution, anatomy, motion and introduces dynamic

similarity theory which plays a crucial role in the experiments presented

later in the thesis.
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Chapter 2

Animation

Animation is the rapid display of a sequence of still images to create the

illusion of motion [186].

Animation techniques exploit the eye’s persistence of vision phenomenon,

in which an afterimage persists on the retina for a short period of time.

This enables an observer to interpret a sequence of still images as if they

were moving [155]. This is the fundamental concept of animation.

In this chapter, two classifications of animation, kinematic and physics-

based, are separately described. Following this is a discussion on the de-

velopment of animal animation approaches over the past three decades,

focusing on a few seminal animation systems. The use of various optimi-

sation and evolutionary computation techniques for generating animated

character and robot motion is then examined. In the final section of this

chapter, conclusions are drawn as to which animation methods and mo-

tion generation strategies are most suitable for quadrupedal animation.

In advance of this however, the following section presents a brief

overview of the history and applications of animation.
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2.1 History and applications

The earliest animation techniques, dating from the 1800s, involved the

use of physical devices, in which some mechanism flipped between two or

more still images. In the early twentieth century, what is now known as

“conventional animation” was invented, where two-dimensional, hand-

drawn images were filmed individually and then displayed in rapid suc-

cession [155]. This hand-drawn approach to animation dominated most

of the twentieth century, helped along by advances in technique and tech-

nology.

The first attempts at computer animation appeared in the late 1960s

and early 1970s. By the 1980s, there were a growing number of com-

mercial, computer-based animation projects and companies. Since the

mid-1980s, high quality computer animations have been regularly incor-

porated into live-action films, television and advertising [109].

In 1995, Pixar’s Toy Story became the first full-length feature film to

be entirely made using computer generated 3D animation. Since then,

multiple big-budget, high-grossing computer animated films have been

released every year. Most of these films contain a large cast of animated

characters, each of which is created with great attention to detail as the

success of a film is largely dependent on the appeal of the characters to

the audience [112].

Animated characters are also prolific in modern video games. While

the earliest games created in the 1950s and 1960s utilised extremely sim-

ple graphics, often consisting of single points in motion, many modern

games feature fully articulated, aesthetically realistic characters.
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As stated previously, this thesis is specifically concerned with the

computer-based animation of animals. Rather than focus on the aes-

thetic appearance of these animated models however, the presented work

centres on the production of realistic animal motion.

There have been many different approaches to animal animation pro-

posed and employed since the earliest computer animated characters.

Most of these approaches can be broadly classified as being either kine-

matic or physics-based techniques. In the following section, kinematic

animation and the hierarchical kinematic model are described.

2.2 Kinematic animation

An animation method is described as being kinematic if the motion of

the objects or characters in a scene is calculated without reference to the

forces that cause that motion [155].

Figure 2.1: Popular characters from films by Pixar. (Images © Pixar)

Kinematic animation techniques allow animators to construct and

move a character in any manner they wish, ignoring physical laws and

real-world constraints if need be. Considering the enormous popularity

of Pixar’s cartoonish characters (see Figure 2.1), it can be inferred that

audience appeal is often more important than rigorous physical realism,

and a kinematic approach to animation can accommodate this.
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A basic kinematic computer animation system has an artist create

a model and direct that model’s motion along a timeline. Rather than

pose the model for every frame of an animation however, the animator

often only sets the model’s position and pose at strategic points in time

called keyframes. The animation system then calculates the intermedi-

ate frames by interpolating between the keyframes, producing the full

animation. This approach can approximate physical realism depending

on the artist’s aspiration and ability, or may deviate from reality entirely

if so required [112].

When realism is necessary, a technique known as rotoscoping is often

employed. Developed in the early 1900s, during the rotoscoping process

an animator produces individual animation frames by tracing over the

corresponding frames of a live-action film. In a traditional rotoscoping

system, the individual frames of a film are projected onto a glass panel.

A sheet of translucent material is placed on top of this panel and the an-

imator then traces the projected image onto that sheet. The rotoscoping

process is significantly simplified and automated by modern computer-

based systems although the basic concept remains the same. The practice

of rotoscoping is still in use today as the lifelike resultant motion can be

difficult to achieve through unassisted hand animation [124].

To further improve the realism of an animation, motion capture tech-

niques are often used. An actor’s movements are first recorded using

multiple cameras and position markers. That captured motion is then

used to drive a character animation [78]. While this animation method

produces highly realistic results, with subtleties that would be difficult

for an animator to reproduce, there are drawbacks. The setup and mo-
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tion capture process is expensive and some required motions could be

impossible to act out.

The majority of modern character animations in movies and games

use either motion capture, keyframe animation (often using rotoscoping)

or a combination of the two. Motion capture is very effective when

realism is required and the associated cost or scenario is not prohibitive.

Keyframe animation, although less realistic, avoids the expense of actors

and equipment and also allows an artist to produce motions that would

be difficult or impossible to perform.

In this thesis, the focus is on realistic animal animation, particularly

that of quadrupeds. Attempting to motion capture non-human animal

movement may be made more difficult by unruly subjects and larger scale

equipment requirements for bigger animals. As such, in the following sec-

tion the focus is on non-motion capture, kinematic character animation

techniques using a structured model.

2.2.1 Hierarchical kinematic modelling

An artist is usually more concerned with the overall form of a character’s

motion rather than with the frame by frame positioning of every mov-

able body segment. A structured model approach such as hierarchical

kinematic modelling is often employed, in which connectivity constraints

are enforced among objects organised in a treelike structure [155].

Hierarchical models frequently comprise a set of objects connected

end-to-end, forming multibody jointed chains. Animals are often mod-

elled in this fashion as the joints between bodies can be manipulated to

produce movement. The figure’s connectivity is built into the model’s
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structure, and motion in one body will affect all other bodies farther

down the chain. This property reduces the burden on an animator, as

he or she need not be concerned with keeping moving bodies attached to

one another.

x x

x

Articulated figure Abstract hierarchical
     representation Tree structure

Root arc
Root node

JointLink

Figure 2.2: Illustration of how an articulated figure can be represented
as a tree structure.

Figure 2.2 shows an example of a hierarchical model. The articulated

figure is a simplified model of some real-life animal; a human in this case.

The figure is composed of body segments and the joints between them,

which can also be depicted as an abstract hierarchical representation

comprising links and joints, as shown in the figure. By examining a

model such as this, the link and joint objects can be organised into a

treelike structure.

In this structure, a model is represented as a series of hierarchical

linkages, illustrated as a set of nodes connected by arcs. The position

indicated by the red cross on the articulated figure (and corresponding

abstract model) becomes the root node in the tree representation. The
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root node is the highest node in the tree and its position is known in

global coordinates, with respect to some global origin. The position of

all other nodes in the tree are relative to this root node. The closer a

node is to the root, the “higher up” it is considered to be in the hierarchy.

Each node in the tree relates to and holds information about a par-

ticular link or body part. Each arc in the tree relates to a joint and

contains the transformation (rotation and translation) that is applied to

all nodes below it in the hierarchy. In Figure 2.2, the root arc represents

a global transformation which when applied to the root node repositions

the entire model in the global coordinate system.

In computer animation, the position and orientation of a model’s

body segments at each frame is specified by the set of transformations

applied to each joint in the hierarchical model. Figure 2.3 shows an

example of an articulated human figure, represented as a hierarchical

model, performing a kicking motion. For each frame of the animation,

rotation values for each joint in the model are supplied. Using this data,

a sequence of transformations are applied according to the hierarchical

model. The links in the model are rotated by some amount, with links

lower down in the hierarchy being equally effected by transformations

applied to links higher up in the hierarchy. In this manner, a kinematic

animation is produced.

To be more specific, this method of animation is known as forward

kinematics; angular information is supplied for each joint in a chain of

bodies and the position of the leaf node, or end-effector, is calculated

from this.
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Figure 2.3: Still frames of a human kicking motion.

With another approach known as inverse kinematics, the artist only

specifies the position that a link, such as a hand or foot, should move to;

no joint-angle information is provided. It is left to the animation system

to calculate by how much each joint in the chain should rotate in order

to move this link to the required position. Although this appears to be

an attractive solution, the major issue with inverse kinematics is that

each problem can have zero, one or multiple solutions depending on how

a system is constrained. If a solution is found, there is no guarantee that

it will be aesthetically agreeable or physically realistic.

As realism is a goal of this thesis, the focus is on producing forward

kinematic animations of animals and generating the sets of joint rotations

that can move a hierarchically structured model in a lifelike manner.

As mentioned previously, a kinematic model can be moved without

regard for dynamics. While an artist may attempt to constrain a model

to behave in a physically realistic manner, it is not a requirement of kine-

matic animation. In the following section a technique known as physics-

based animation is described, which introduces physical laws into the

animation system, thus enforcing physical realism on a scene.
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2.3 Physics-based animation

In contrast to kinematic animation, physics-based animation systems use

the laws of physics to determine the behaviour of a computer constructed

scene or model.

A physics engine controls the physical simulation of rigid bodies in a

scene through integration of their equations of motion and the resultant

animations are physically realistic. This technique also removes the need

for an artist to hand-animate the frames of motion, however, some of the

artist’s control over a scene is relinquished.

Figure 2.4: Physical interaction between three rigid bodies.
Video 2.1 Physics engine rigid body demonstration

The physics engine ensures that rigid bodies in a scene react in a

physically realistic manner to gravity, friction, collisions, applied forces

and torques [53]. In Figure 2.4, three rigid bodies fall in synchrony un-

der the force of gravity. The collisions between the bodies and associated

friction exert forces on each of them producing linear and angular accel-

erations. While this scene consists of a collection of unconnected objects,

models comprising interconnected rigid bodies are also possible allowing

for the creation of articulated animal models.

In a physics-based animal model, the rigid bodies can represent the

animal’s bones, or body segments, and the connections between these
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bones are the joints. When connecting the rigid bodies, the degrees of

freedom of each joint must be specified.

Hinge Ball and socket Prismatic (sliding)

Figure 2.5: Three commonly used joints in computer animation.

The hinge joint in Figure 2.5 is an example of a simple joint with one

degree of freedom allowing movement in a single direction. The ball and

socket joint is an example of a complex joint with more than one degree

of freedom. Both of these joints are the computer animation equivalent of

biological joints (discussed in Section 4.2.2). The third joint in the figure

is a prismatic or sliding joint that allows a single-axis sliding motion.

While this type of joint is not usually found in nature, it can be used to

approximate the shock absorption effect and elastic mechanisms observed

in animal musculoskeletal systems.

Figure 2.6: A physics-based horse model without constraints or torque on
the joints. The model collapses to the ground under the force of gravity.
Video 2.2 Rag doll horse model

The horse model shown in Figure 2.6 is constructed from a set of rigid

bodies, each corresponding to a particular bone or body segment. Each
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of these bodies is attached to one or two other bodies by an appropriate

type of joint. In this example however, besides the degrees of freedom

enforced by each joint’s type, no additional constraints or torques are

applied to the joints. The force of gravity therefore pulls the model to

the ground like a rag doll, as can be seen in the sequence of images.

To produce motion in the model, or simply hold it up against gravity,

torques can be applied about the joints, emulating muscle force and pro-

ducing motion in the connected bones. As the bones are interconnected

by joints, forces applied to a single rigid body may propagate through-

out the rigid body system. For locomotion, a motion controller applies

torques of specific magnitude about each of the joints in a limb with

precise timing to produce the required sequence of bone rotations.

The high-level view of how motion can be produced in a physics-based

articulated model presented above does not address the issue of how the

torques on the joints are calculated. As with kinematic systems, physics-

based animation approaches can be subdivided into inverse and forward

subgroups.

In an inverse dynamics system, the desired end-position of a limb seg-

ment is known and the forces and torques required to move that segment

to its destination are calculated backwards. Forward dynamics operate

in the opposite fashion. Given the current state of the model, i.e. the po-

sition, forces and torques acting on its component bodies, the destination

state of the model is predicted [53].

This description of physic-based animation is a highly simplified in-

troduction to a nontrivial animation method. Further details of how a

physics-based animal model is constructed are provided in Section 5.3.1.
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Creating motion in the model and the issue of inverse versus forward

dynamics will be revisited in Section 5.3.2.

While the construction of the scene or model is crucial to the success

of the animation, the other fundamental component of a physics-based

animation is the physics engine itself.

2.3.1 Open Dynamics Engine

The physics-based animation experiments presented in this thesis use the

Open Dynamics Engine (ODE) [180], as it is well-regarded, stable and

open-source. There are other physics engines available, but many are

commercial products and are significantly expensive. ODE is an easy to

use, open-source alternative and has been successfully applied to physics-

based horse animation [119].

ODE is a high performance library that handles all of the low-level

details of the physical simulation, including the physical motion of rigid

bodies and collision detection with friction. The library is platform in-

dependent and its simple to use C/C++ API allows a user to construct

articulated rigid body systems with relative ease, using the provided rigid

body primitives and joint types.

ODE’s supplied geometries include a sphere, box (cuboid), cylinder,

capsule and user definable triangular mesh. When constructing a model

or scene, these primitives are created with user-defined dimensions, mass,

centre-of-mass position and inertia matrix. Each body is then given

a starting position and orientation in the scene. Linear and angular

velocities can also be set and external forces may be applied to the bodies

during simulation.
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If the user wishes to connect the rigid bodies together, several joint

types are provided. These include hinge, ball and socket, prismatic

(slider), universal and hinge-2. A universal joint is a more constrained

version of the ball and socket joint and the hinge-2 behaves like two

regular hinge joints in series. Each of these joints exhibit different be-

haviours and have user-adjustable parameters. One of the most useful

adjustments is the ability to limit the degree to which an attached rigid

body can rotate about one of the unconstrained axes of a joint.

Once the scene or model is constructed, the simulation can begin.

The process of simulating a rigid body system through time is known as

integration. At each integration step, the current time is advanced by a

given step size and the state of each rigid body in the system is recalcu-

lated for that new time value. The entire scene can then be graphically

displayed on some output device in its updated state. This continuous

process of updating and displaying the state of the scene yields the ani-

mation. The ODE library itself does not produce any graphical output

however, so it is the user’s responsibility to use a graphics library to ren-

der objects corresponding to the ODE geometries, if so required. All of

the animation examples in this thesis have been rendered using OpenGL

[95, 176] which is discussed in Chapter 5.

There are many adjustable parameters in any physical simulation and

ODE is no exception. Variables such as the joint stiffness, or the depth

to which objects may interpenetrate can visibly affect the behaviour of

objects in a scene. Other parameters such as the time-step size must be

appropriately set in a trade-off between accuracy and performance of the

simulation.
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Stability is also an issue with this type of animation. A particular

type of scene or model may be prone to “explosions” in which calculation

errors accumulate and lead to non-physical behaviour. Problems such as

this can be solved through adjustment of the simulation parameters or as

a last resort, modification of the scene. This is one of the more common

difficulties with creating a physics-based animation and will be discussed

further in Section 5.3.3. A full description of the features and parameters

of ODE can be found in the manual [180].

ODE summary

ODE is currently used in multiple computer games, simulation and 3D

authoring tools [181]. The authors claim it is useful for simulating ve-

hicles, virtual reality environments and virtual creatures. In this thesis,

ODE is used to create a physics-based model of a horse, described in

Section 5.3.

In the past, fully featured physics engines such as ODE and the com-

putation power to run them were not available. As animal animation

systems developed over the last twenty-five years however, elements of

dynamics were incorporated and the resulting animations became in-

creasingly realistic. This development of animal animation systems to-

wards ever greater physical realism is discussed in the following section.
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2.4 Development of quadrupedal animation

Quadrupedal locomotion is studied in both the computer graphics and

robotics fields. In the computer graphics field, the goal of this research is

to produce animations. In the robotics field however, analysis, simulation

and animation of animal motion is often part of the robot development

process.

Regardless of motivation, this mutual interest in how four-legged ani-

mals and robots move has produced a significant number of publications

detailing observations of quadrupedal locomotion, animation systems and

motion generation approaches.

The following section describes the development of quadrupedal ani-

mation techniques and related knowledge over the past three decades.

2.4.1 Animation techniques

The realistic animation of humans and other bipeds is a popular research

topic [185]. The animation of quadrupeds is less well studied, however,

animation techniques developed for use with biped models can often be

applied to quadrupeds with certain modifications.

As previously stated, the realism of an animation created using a

simple keyframe-based animation system is dependent on the skill and

intent of the animator. A character’s motion can be automated to some

degree using a procedural approach, however, low-level control over the

animation is often relinquished and the complexity of a character’s ar-

ticulation’s can prove problematic.
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The rotoscoping technique introduced in Section 2.2 has been exten-

sively used for character animation throughout the last century. Disney

often filmed real-life animals in order to rotoscope their motions [187].

This technique was used to produce the motion of quadruped characters

in films such as Bambi and The Jungle Book.

Rotoscoping techniques can also be used to produce animal anima-

tions from a series of high-speed photographs of animal motion. The

source of these photographs will be discussed in Chapter 6. Motion

capture techniques, also introduced in Section 2.2, are often used for

quadrupedal animation, however, the difficulties involved in capturing

animal motion is often prohibitive. The subject of animal motion cap-

ture is revisited in Chapter 6.

In this section, the focus is on quadrupedal animation systems which

do not rely entirely on motion capture data. Other alternative forms of

motion capture (including statistical analysis [58, 68], contour tracking

which allows for a more automated approach to rotoscoping [3] and au-

tomatic extraction of motion from video [202, 108]) are not discussed in

detail.

From kinematic to physics-based animation systems

One of the earliest computer generated animal animation systems was

introduced by Michael Girard and A. A. Maciejewski. In their 1985

paper [70], decades of mathematical, bioscience and robotics research are

combined to describe a general model of legged locomotion. Focusing on

legged animals in general, the animation is based on an artist-generated

motion. This motion is described through input parameter values and
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the model’s feet are moved into a desired position by the artist. The

joint-angles of each limb are then calculated using inverse kinematics.

Whilst this is not a physics-based animation, the system ensures that

accelerations of the model’s body are synchronised with the timing of the

forces that would be propagated through its legs, were it not a kinematic

model.

In a later paper [122], McKenna states that accurate simulation of

Newtonian mechanics is essential if a model is to move realistically. The

paper describes how a cockroach is animated by numerical integration

of its equations of motion. Locomotion is produced through the appli-

cation of torques about its joints according to motion patterns based on

biological observations.

Building on this work, Raibert describes how control algorithms are

used in the animation of dynamic legged locomotion [165]. A biped robot,

quadruped robot and kangaroo, which move with a specified limb pattern

and speed, are modelled while control algorithms control the joints, model

speed, direction and balance. The control algorithms translate a desired

behaviour into control signals for the simulated actuators which in turn

move the joints, producing movement.

It is worth noting that McKenna’s [122] and Raibert’s [165] multi-

legged models have unarticulated limbs as can be seen in Figure 2.7.

The joints in the hexapod’s lower leg are rigid (B) and the biped and

quadruped models (C) have limbs similar to pogo sticks. At that point

in time, realistic physical modelling of an animal with articulated limbs

such as a dog or horse was an open problem.

40



A B C D E

Figure 2.7: Images from important animation papers. A. Girard 1985
[70]: 14 legged insect. B. McKenna 1990 [122]: diagram of cockroach
and hexapod model. C. Raibert 1991 [165]: quadruped, kangaroo and
biped model. D. Kokkevis 1995 [102]: dog model. E. Marsland 2005
[119]: horse model.

Addressing this problem, Kokkevis presents a framework for anima-

tion and motion control of four-legged animals, specifically a dog [102].

The system uses a combination of kinematics and dynamics to produce

movement; the legs are treated dynamically during ground contact and

kinematically during the swing phase. A motion controller directs the

stepping pattern based on limb pattern information extracted from pho-

tographs such as Muybridge’s [136] (discussed in Section 6.1.1). Although

Kokkevis’s dog animations represent a step forward in terms of complex-

ity, the dog’s motion appears stiff and unnatural due to simplification of

the model and constraints imposed on the freedom of movement of its

joints.

Torkos produces animations of a 3D cat model using a combination

of physics-based and kinematic animation [190, 191]. The presented ap-

proach is similar to the PODA animation system described by Girard ten

years earlier [69]. Quadruped gaits are generated using constraints based

on the location and sequence of the model’s footprints. The motion of

each limb’s joints is calculated using inverse kinematics and dynamics

calculations constrain the overall motion to appear realistic.
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Some years later, Herr presents a two-dimensional numerical model

of a horse at a trot and gallop, which again represent a growth in model

complexity [88, 89]. Motion information is acquired from mechanical

and energetic data published in the biomechanical literature while some

of the movement data is also obtained from slow motion video footage

of a horse in motion. The model correctly predicts that stride frequency

and stride length change with speed.

Continuing with horses, Marsland and Lapeer describe a 3D real-time

physics-based model of a trotting horse using the Open Dynamics Engine

[119]. Motion data is extracted from a video of a horse using an active

contour technique and morphological data is acquired from the biology

literature.

Animation skeletons and meshes

The aforementioned papers each focus on producing motion in a model

through manipulation of its animation skeleton. To produce an aesthet-

ically realistic animation, an artist often places a 3D polygon mesh over

this skeleton in a process known as skinning. The links of the articulated

skeleton are attached to this mesh and as the skeleton moves, the mesh

deforms accordingly. Issues such as skinning and the attachment process

(rigging) are specific animation techniques and are beyond scope.

In a simple keyframe-based animation, the animator may simply ma-

nipulate the model’s mesh into a sequence of poses and create the ani-

mation frames through interpolation of the keyframes. In many modern

character animation systems however, the movement of the mesh is de-

termined by the motion of an underlying skeleton.
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The form and function of an animation skeleton is a highly researched

topic and a subject which is discussed in a recent comprehensive review

of quadrupedal animation methods and applications [179]. Assuming a

skeleton is available, an animal’s motion can be applied to that skeleton

and the animation system will determine how the motion affects the over-

lying mesh. The motion of the skeleton itself is determined by the artist,

rotoscoping, motion capture data or a procedural animation approach.

In situations when a skeleton is not available, given a particular mesh,

it is possible to estimate where bones may be located by clustering the

triangles of that mesh based on the transformation of the triangles [97].

Animations are often produced through direct deformation of the sur-

face mesh without regard for the motion of an underlying skeleton. The

manner in which the vertices of the mesh are moved varies between tech-

niques. To afford a user useful control over the skeletonless mesh, certain

limitations on the deformability of a mesh can be imposed based on the

observation that adjacent vertices in a mesh often move together [48].

The triangle mesh concept can also be used to represent more than

just the outer skin. The bones, muscle and other tissue of a real-life

animal can be modelled using meshes, cylinders and ellipsoids; as bones

move, muscles change shape and thus deform the surface mesh [204, 177].

Animation systems

The papers discussed previously in this section represent some of the more

influential animal animation publications to date. In the game industry,

most quadrupedal animations are created using a combination of hand-

drawn, motion capture, inverse kinematic and procedural techniques.
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The advantages and limitations of each approach determine the amount

of control a user has over the animation and thus its suitability for a

particular application.

In computer games, quadrupedal animations are commonly produced

manually or through rotoscoping [179]. This can be time-consuming and

unrealistic so to avoid the need for an artist to hand-animate individual

frames of motion, several alternative techniques are also used. Inverse

kinematics-based systems are commonly employed as well as procedural

animation approaches; for example, a character’s motion may be de-

scribed as a sequence of body-part rotations over time.

Physics-based animations of biped and quadruped characters are rel-

atively uncommon in practice due to the complexities involved in pro-

ducing the models and creating stable animations. In those systems that

do utilise physics-based characters, the animator may not be afforded

low-level control over a character’s motion; some systems allow the user

to simply control the high-level behaviour of the character [113]. A typ-

ical behaviour-centric system has a user provide high-level behavioural

commands to a model which are converted to the appropriate behaviour

and thus animations by the system [27].

As well as allowing a user to directly control a model’s behaviour, ar-

tificial intelligence techniques are also employed [189]. The motion and

behaviour of a model depends on its morphology. Rather than have an

artist create animations for every unique required motion, animation sys-

tems such as Spore create automatic motions and behaviours using pro-

cedural animation techniques [16]. The Spore system is based on a mo-

tion retargeting method which allows generalised data in a morphology-
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independent form to be applied to specific characters using an inverse

kinematics solver [83].

Robotics

As most of the earth’s land is inaccessible to wheeled and tracked vehicles,

legged robots that can tackle challenging terrain are valuable. Many

of the motion, balance and foot placement techniques outlined in the

robotics research papers are equally applicable to computer animation,

and quadruped simulation systems are often described in the robotics

literature [198].

The issue of uneven terrain is of particular interest in robotics [61,

54, 96]. Arguably the most advanced rough terrain quadruped robot in

the world is currently Boston Dynamic’s BigDog [164]. It is incredibly

sophisticated, utilising an abundance of sensors to dynamically influence

its stepping motion. In addition to BigDog’s impressive array of onboard

equipment, a rough terrain walking algorithm which was developed using

physics-based simulations controls the robot’s gait.

Also developed by Boston Dynamics is LittleDog ; a quadruped robot

designed specifically for locomotion research. LittleDog is used in many

institutions for research into motor learning, dynamic control, rough ter-

rain locomotion and perception. Sony’s AIBO robot is another example

of a relatively affordable robot which can be used for locomotion research

purposes [93]. Many bespoke robots are also developed in research insti-

tutions for a range of locomotion challenges.

Robotics is a huge field of research and one which shall not be dis-

cussed here, however, some of the advances in robotic locomotion can
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be equally applicable to quadrupedal animation. In particular the use of

optimisation algorithms for robot gait generation has become common-

place and is of interest to us. Some examples of this are presented in the

following section on motion generation.

2.4.2 Gait generation

A gait is a pattern of limb motion with which an animal (or robot) moves.

The animation papers described in the previous section use either

artist-generated gaits or rely on motion data measured from real-life an-

imals. In this section, the issue of automatic gait generation is explored.

An early method for generating character motions is presented in

the seminal “spacetime constraints” paper [205]. In this system, a user

inputs a model’s physical structure and what resources that model has

for creating motion; a model with limbs can push them against a ground

surface to create movement for example. The user then specifies what

the character is to do, and the manner in which it is to do it. This high-

level description of the animation requirements, coupled with Newton’s

laws of motion, create a constrained optimisation problem. The paper

describes a numerical optimisation approach which attempts to find a

solution to this problem that is physically realistic, completes the task

set and does it in the manner specified. This idea is subsequently built

upon by allowing a user to interactively guide a numerical optimisation

problem to an optimal solution [40].

Van de Panne presents another guided optimisation technique specif-

ically designed to address balance issues [196]. In this physics-based ani-

mation system, balanced locomotion is learned in stages using a gradient
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descent algorithm for the parameter optimisation. During the initial

stages, balance is handled through the application of balancing forces.

The influence of these stabilising forces is reduced in increments, as the

model learns to balance by itself. The technique as presented relates to

biped locomotion but is applicable to animals with other multiples of

limb.

Another interesting animation technique is presented by van de Panne

where the control mechanisms used for this physics-based animation tech-

nique are described as being analogous to wind-up toys and the models

have no control over their balance [194]. It is instead assumed that the

inherent stability of a gait is sufficient. The issue of stability is further ex-

plored where footprints are used as an optimisation constraint [195] and

a numerical optimisation approach for improving stability in quadruped

locomotion is presented [79].

One of the aims of Srinivasan and Ruina is to prove that human walk-

ing and running are the most efficient ways in which to move at particular

velocities [182]. Using a minimal biped model, a numerical optimisation

process discovers walking, running and a third energy efficient interme-

diate gait pattern. Other novel motion generation approaches rely less

on the optimisation of data and more on creating smart motion control

algorithms [21], often inspired by nature [87].

Fourier analysis of animal movement is also used for the production of

gaits. The results of a Fourier analysis of periodic animal gaits are used

as input to a simulated robot’s joint actuator controllers [171]. Fourier

analysis can also yield gait transitions for a computer-based legged animal

model [126].
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Most of the above mentioned papers use parameter optimisation ap-

proaches to produce balanced, physics-based motion. In the following

subsection, a variety of papers that apply biologically inspired approaches

to motion optimisation are introduced.

Biologically inspired optimisation examples

Biologically inspired algorithms (BIA) is a category of algorithms that

mimic natural processes and are discussed in detail in Chapter 3. Popu-

lar BIAs include Artificial Neural Networks (ANN) and Particle Swarm

Optimisation as well as Genetic Algorithms (GA) and Genetic Program-

ming (GP) which are both classified as Evolutionary Algorithms (EA).

BIAs are often used in robotics and animation systems for the automatic

production of legged locomotion.

The Euphoria physics engine created by Natural Motion for example

allows characters to be animated in a physically realistic manner whilst

reacting in real-time to their environment and external forces [130]. The

makers of Euphoria state that the engine simulates a computer con-

structed character’s “motor nervous system, body and muscles” using

Dynamic Motion Synthesis. Similar to the seminal work of Karl Sims

[178], GA are used to evolve a form of Neural Networks as the controllers

which determine the forces to apply to the skeleton [169].

The Euphoria system allows 3D characters to be interactively con-

trolled and generates unique motions dynamically; this is in contrast to

a system which exclusively uses predefined animation sequences (canned

animation). The system has been used for biped characters in the Amer-

ican football game BackBreaker [129] to create unique tackles and to

48



animate horses in the Western game Red Dead Redemption [65]. The

gait cycle motion of a character is based on heavily detailed motion cap-

ture and the Euphoria engine creates the physically realistic motion that

occurs between motion capture sequences; these dynamic sequences usu-

ally occur due to external forces applied during gameplay.

Neural Networks are commonly used for gait pattern and transi-

tion generation [110, 115]. Examples include Jeff Clune’s HyperNEAT-

based system for generating quadruped gaits [39]. HyperNEAT is a gen-

erative encoding for evolving Neural Networks using the principles of

the NeuroEvolution of Augmented Topologies (NEAT) algorithm. The

HyperNEAT-based system is found to evolve impressive looking quadruped

gaits with less human intervention than would normally be required when

using a traditional EA to evolve a motion controller.

Gong et al. present a comprehensive review of evolutionary compu-

tation (EC) methods for gait optimisation [73] including applications of

each of the aforementioned BIAs. Within this review, strong arguments

are made in favour of using EC methods for gait optimisation problems.

Focusing on specific EC approaches, the performance of GA and GP for

quadruped robot gait generation has also been recently compared [175].

The performance of each EA is found to be dependent on the particu-

lar problem, however, GP, which is a far less popular EA than GA for

gait optimisation, performed better in certain situations; a result which

certainly warrants further investigation and is explored in this thesis.

GAs are the most commonly used EA for generating quadruped robot

gaits [67, 206, 100]. Of particular interest is the work of Kiguchi et al.

as the evolutionary search is concerned with finding a gait that uses
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minimal energy, while covering a required distance at a specified speed

[100]. This approach can be applied to gait generation for quadruped

animal animations as they state that the optimal gaits produced for the

robots are comparable to those expected of a real-life animal travelling

at relatively similar speeds (see Section 4.5 on dynamic similarity).

While GA seems to be the gait generation EA of choice in robotics,

other techniques are also used [73]. GP-based techniques for automatic

quadruped robot gait generation are occasionally applied [174] and Par-

ticle Swarm Optimisation is found to generate fast quadruped gaits [172].

An autonomous, unspecified EA is used to generate gaits for the Sony

AIBO Quadruped Robot [93].

The robotics papers discussed in this section represent a small portion

of the literature available on the automatic optimisation of robot gaits.

Although many different BIAs have been applied to this problem, the

overwhelming majority of approaches employ some form of GA. This

suggests that the suitability of GP for gait optimisation problems may

be an open question and one which deserves investigation.

2.5 Chapter summary

In this Chapter, we have introduced the subject of animation and dis-

cussed two major animation classifications; kinematic and physics-based.

Physics-based animation techniques are very realistic and can auto-

matically simulate highly complex interactions, given a well constructed

scene or model. A major drawback of this approach however, is the

nontrivial nature of the model construction and simulation setup. Sim-
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ulations may also suffer from stability issues and for a computer game,

the real-time computational cost of complex scenes can be prohibitive.

A kinematic animation technique in comparison suffers from none

of the simulation related problems. In a computer game, as most of

the motion information is produced by the artist in advance, kinematic

animations incur relatively little computational expense. The downside

of kinematic animations is that even highly skilled artists struggle to

animate complex physical interactions. Further to this, it could be im-

possible to produce and store an appropriate animation for every possible

physical interaction that could occur in a game. Both techniques have

positive and negative aspects depending on the situation. In practice,

often a combination of kinematic and physics-based animation is used.

In this thesis, both kinematic and physics-based animation of quadrupeds

is explored. Building on the animation systems described in Section 2.4.1,

both a kinematic and physics-based model of a horse is constructed and

animated, as will be discussed in Chapter 5.

The motion data used to animate these models must be generated

and optimised by some means, and there are several ways to do this, as

was seen in Section 2.4.2. Numerical optimisation is a well established

and regarded technique, however, the biologically inspired algorithms

used so prolifically in the robotics field show great promise for animation

purposes and warrant investigation.

In this thesis, we explore the use of evolutionary algorithms for quadrupedal

animation. The field of natural computing is introduced in the next

chapter and three evolutionary algorithms are presented and compared

as candidates for quadrupedal gait generation.
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Chapter 3

Natural computing

Natural computing is the study of computational systems inspired by

nature. The term natural computing generally refers to three types of

system: problem solving systems inspired by nature, computer systems

that simulate natural phenomena and systems that use natural materials

to perform computations [45]. In this thesis, the focus is on those systems

that take inspiration from natural processes.

In the previous chapter, it was concluded that quadrupedal anima-

tion could benefit from the application of biologically inspired algorithms

to the motion generation problem. Of all the biologically inspired algo-

rithms available, those which are classified as evolutionary computation

techniques seem particularly applicable, as animal gaits themselves are

a product of natural evolution.

In this chapter, the large field of research known as evolutionary com-

putation is described in Section 3.2 and the basic structure of an evolu-

tionary algorithm is presented.
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Section 3.3, 3.4 and 3.5 each provide complementary overviews of

three popular evolutionary algorithms: Genetic Algorithms, Genetic Pro-

gramming and Grammatical Evolution respectively.

This chapter concludes with a discussion on why Grammatical Evo-

lution is specifically used for the experiments presented in the thesis.

The descriptions of evolutionary algorithms in this chapter frequently

refer to genetic processes and terminology. A basic introduction to the

aspects of genetics and the evolutionary process that will be referred to

in this chapter is presented in Appendix Section A.1.

This chapter commences with a brief overview of the many biologi-

cally inspired algorithms in use today.

3.1 Biologically inspired algorithms

Biologically inspired algorithms (BIAs) are types of algorithms that mimic

natural processes to solve some problem [30]. They have been suc-

cessfully applied to difficult real-world problems as diverse as financial

prediction[44, 30, 145] and model design [106, 1]. The most popular

BIAs include evolutionary computation algorithms, swarm intelligence

algorithms, Artificial Immune System algorithms and Artificial Neural

Networks [45].

Inspired by the central nervous system, Artificial Neural Networks

(ANN) are simplified models of the human brain created in silico or as a

mathematical model. The basic structure of an ANN involves groups of

artificial neurons which are interconnected by the computer equivalent

of a synapse. An ANN is an adaptive system. During a learning phase,
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the internal structure of the ANN changes based on information, both

internal and external, that flows through the network. This learned struc-

ture of simple neural units and the connections between them can model

complex input-output relationships and make ANNs highly applicable to

pattern recognition problems.

As with ANNs, immunocomputing takes inspiration from animal phys-

iology. The immune system is a highly complex system that must con-

stantly recognise, destroy and remember both harmful foreign bodies

and malfunctioning native cells. Artificial Immune System algorithms

typically exploit the memory and learning ability exhibited by immune

systems to solve complex pattern recognition problems.

Moving from internal to external behaviours, observations of the so-

cial interactions of organisms have been utilised in computational sys-

tems. Known as Swarm Intelligence, these systems typically comprise a

self-organising population of simple agents who interact with each other

and their environment. There is no central command centre, rather each

agent follows a simple set of rules, with their interactions leading to

emergent “intelligent” behaviour on a global scale. Comprising specific

techniques such as Ant Colony Optimisation and Particle Swarm Opti-

misation, these systems are inspired by the workings of natural systems

such as ant colonies, animal herding and bird flocking behaviour. Swarm

intelligence systems have been directly used in the animation of animal

flocks and crowd scenes in movies.

Ant Colony Optimisation systems are suited to path finding prob-

lems whilst Particle Swarm Optimisation techniques are robust to the

difficulties caused by local minima in global minimisation problems.

54



As mentioned above, another major collection of BIAs are classified as

evolutionary computation techniques and are discussed in the following

section.

3.2 Evolutionary computation

Evolutionary computation (EC), a subfield of computational intelligence,

is an umbrella term for a collection of BIAs adapting concepts of natural

evolution and molecular biology [52].

EC techniques have been successfully applied to numerous engineering

and design problems [106, 1] as well as computer games [64, 32, 2], musical

composition [168, 201] and financial prediction [44, 30, 145]. When set

up appropriately, these techniques can automatically solve problems that

are nontrivial for humans. Results can be human-competitive and even

improve upon the best human efforts [106, 127]. The reason that these

EC algorithms are so adept at solving complex problems is the underlying

evolutionary engine upon which they are based.

The environments that biological organisms inhabit are dynamic and

highly complex. Through natural evolution these organisms adapt to

outperform their peers in terms of survival and reproduction. An organ-

ism can increase its chances of being selected by being slightly better

than the competition at attaining the available resources. It is this con-

cept of “survival of the fittest” that is a cornerstone for each member of

a set of EC techniques called Evolutionary Algorithms (EA).

For these EAs, the correlation between biology and computer science

is reasonably straightforward. The environment in which an organism
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lives is equivalent to a problem that is to be solved. It follows that the

biological organism is analogous to a solution to that problem. The per-

formance of a solution at solving a problem corresponds with the concept

of biological fitness and the best performing solutions are consequently se-

lected, as occurs in natural selection. Essentially, an EA simulates those

evolutionary mechanisms described in Appendix Section A.1.2, namely

selection, reproduction, recombination and mutation. The organisation

of these mechanisms in an EA is the same as that of a natural evolution

system.

3.2.1 Evolutionary algorithm overview

An EA solves combinatorial optimisation problems through the simula-

tion of evolving populations of solutions which are guided towards an

optimal solution by use of a fitness function.

The fitness function is always dependent on the problem and has to

reliably measure the quality of a solution. In cases where the fitness of a

solution is very difficult to define, such as the quality of a generated piece

of art, an interactive fitness function may be used exploiting the human

ability to evaluate the unquantifiable “goodness” of something. For best

results, this fitness function must be carefully chosen in tandem with the

phenotypic solution representation, whose variable characteristics will

define its fitness performance.

Figure 3.1 presents the basic pseudocode of an EA, alongside an illus-

tration of the natural evolutionary engine. An examination of this figure

should elucidate the relationship between a natural evolutionary system

and an EA. The major difference between the systems is the EA’s very
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specific start and end points, determined by the population initialisation

step and termination clause respectively. Aside from this disparity, the

EA process functions comparably to its natural counterpart.

Population

Parents

Selection

Repla
ce

m
ent

Offspring

    Variety
Generation

Initialise Population
WHILE (Termination condition False)

Select Parents
Create Offspring
Update population

ENDWHILE

Figure 3.1: The cycle of natural evolution and the basic evolutionary
algorithm pseudocode.

From an initial population, individuals with above average fitness are

selected to reproduce. These parent individuals produce offspring, whilst

genetic variation is provided through a recombination process inspired by

chromosomal crossover. Further variation is introduced through muta-

tions. These offspring individuals are then added into the population,

replacing some previously resident individuals. The entire cycle contin-

ues until some termination condition is met.

There are many initialisation, selection, recombination, mutation and

replacement techniques in use today. The specific choice of technique

varies between EAs and are chosen to provide appropriate, balanced va-

riety generation. Probably the most distinguishing feature of an EA is

its genetic representation which encodes the physical structure and be-

haviour of its individuals. Details such as this will be discussed in relation

to specific EAs in the upcoming sections.

There are five major metaheuristic optimisation algorithms that are

classified as EAs, as shown in Figure 3.2. Genetic Algorithms [91, 127],
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Figure 3.2: Evolutionary algorithms.

Genetic Programming [105, 22] and Grammatical Evolution [149, 150]

will be explored in some detail in Sections 3.3, 3.4 and 3.5 respectively.

Before this, Evolutionary Programming [60, 52] and Evolutionary Strate-

gies [167, 26] are very briefly introduced.

3.2.2 Evolutionary Programming

Evolutionary Programming (EP) is a broad dialect of EC. Developed in

the USA by Lawrence J. Fogel in the 1960s, EP was originally applied

to the task of generating artificial intelligence using finite-state machines

as predictors [60].

Some original variants of EP resembled modern Genetic Program-

ming (see Section 3.4) except that in those early EP systems, solutions

to a problem were found by evolving the parameters of a fixed program

structure. The modern, broad definition of EP has no set genetic repre-

sentation although the genotypes are often fixed-length character strings

and mutation is the primary variation operator [52].

At its current point of development, EP is considered very similar to

another EC technique, Evolutionary Strategies.
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3.2.3 Evolutionary Strategies

Although similar to EP, Evolutionary Strategies (ES) was created sepa-

rately in the 1960s, and was subsequently developed by Ingo Rechenberg

and Hans-Paul Schwefel in Germany in the 1970s [167].

The ES representation is a vector of real numbers. As with EP,

ES uses mutation and selection as the primary search operators. ES

is distinguished however, by its set of mutation (self-adaptive rates) and

selection techniques [26].

In parallel to ES and EP, another EA called Genetic Algorithms was

being developed and has since become the most popular type of EA in

use today.

3.3 Genetic Algorithms

Genetic Algorithms (GA) gained its popularity through the work of John

Henry Holland in the 1970s [91]. Continuous theoretical research even-

tually led to the release of the first commercial GA products in the mid-

1980s and development continues to this day.

GAs use a linear binary genetic representation, most usually an array

of bits. Each of these binary strings, referred to as chromosomes or

genotypes, encodes a solution (phenotype) to an optimisation problem.

The evolutionary search process, outlined in Section 3.2.1, operates on

the genotype which is decoded into the phenotypic solution to measure

its fitness value, pre-selection.

The GA chromosome is usually of fixed-length. It is subdivided into

genes with each gene comprising a fixed number of bits. Each of these
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genes can be used to encode a value, e.g. integers or reals, and each of

these values could be a numerical parameter to a particular problem.

The cycle of the GA follows the pseudocode shown in Figure 3.1 and

is described in more detail below:

1. Generate an initial, random population of N strings

2. Decode each string into its phenotype and evaluate its fitness

3. Select two parents from the population

4. Create two children using the crossover and mutation operators

5. Repeat steps 3 and 4 until N children have been created

6. Replace the existing population with the newly created children

7. Repeat steps 2 to 6 until the termination condition is met

The above sequence of actions form the general skeleton of a GA

[127]. When implementing one however, some important choices need to

be made.

The highest level problem-specific issues are that of the phenotypic so-

lution’s structure and the fitness function. The genotype encodes a range

of values which are evolved and then evaluated by a fitness function. The

values encoded in the genotype must describe a solution to the problem.

The fitness function must be able to return a score based on a solution’s

ability to solve that same problem. The structure of the phenotype and

fitness function are always very problem-specific. Other implementation

choices however, can be made based on the general nature of a problem.

Take a lower level detail such as the genetic representation for exam-

ple. The standard GA representation is a binary string, but one may

choose to use reflected binary code (Gray code) to avoid the Hamming
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Cliff problem that can occur when bit-strings are used to represent in-

tegers [25]. Variable-length representations are also possible but require

more complicated crossover operations (see Section 3.3.2). The represen-

tation’s type is also changeable. The standard GA representation is an

array of bits, but arrays of other types may also be used, e.g. floating

point. These choices are low-level and beyond scope. Other choices in a

GA implementation however, are common to most popular EAs.

As can be seen in the list of steps involved in a GA, individuals must

be selected, recombined (crossover and mutation) and replaced in the

population. The variation operators involved in the EA recombination

process are described in upcoming Sections 3.3.2 and 3.3.3 in terms of

GA implementation, and later in relation to Genetic Programming and

Grammatical Evolution. The selection and replacement techniques de-

scribed next however, are common to each of these EAs.

3.3.1 Selection methods

At each generation in the EA process, a proportion of individuals from

the current population are selected from which to create a new genera-

tion. These selected individuals may be bred together and their offspring

entered into the next generation. Certain selected individuals may be

mutated before being placed back into the population. On some occa-

sions, individuals that have the highest fitness in a population are copied

directly into the next generation in so-called elitist selection.

The common factor that determines whether an individual is selected

or not is fitness; a fitter solution is more likely to be selected. Several

different types of selection method are available. The majority of these
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methods are stochastic and purposefully allow for the possibility that a

few of the less-fit solutions in a population may get through to the next

generation. This randomness promotes diversity in the population and

can prevent premature convergence upon inadequate solutions. Roulette

wheel selection and tournament selection are the most popular selection

methods and are briefly described here.

Prior to the first step in roulette wheel selection (fitness proportionate

selection), a fitness value is assigned to each individual. In an analogy to

a roulette wheel in a casino, each individual can be thought of as having a

portion of the wheel assigned to it based on its fitness. Each individual’s

fitness value is normalised by dividing its actual fitness value by the sum

of all the other individual’s fitness values. The sum of all the individual’s

normalised fitness values is 1. Analogous to a spin of a roulette wheel, a

random number is chosen between zero and one. The individual whose

normalised fitness is the first value greater than the random number is

chosen. In roulette wheel selection the probability of being selected is

given by Equation 3.1.

pi =
fi
N∑
j=1

fj

(3.1)

where fi is the fitness of individual i in the population, pi is the probability

of that individual being selected and N is the number of individuals in

the population.

Roulette wheel selection may cause some of the higher scoring indi-

viduals to be removed from the population. It may also select some of the

62



weaker individuals, however, this is advantageous as it promotes diver-

sity. Another popular selection method which can exhibit less stochastic

noise is tournament selection.

In tournament selection, a number of individuals are randomly picked

from the population. “Tournaments” are held on these subsets of indi-

viduals to select an individual for crossover. An adjustable tournament

size controls selection pressure with larger tournament sizes favouring

stronger solutions. The general steps of the tournament selection pro-

cess are listed below:

1. Choose N individuals from the population (N is tournament size)

2. Choose highest fitness individual with probability p (where p = 1)

3. Choose next highest fitness individual with probability p ∗ (1− p)

4. Choose next highest fitness individual with probability p∗((1−p)2)

5. Choose next highest fitness individual with probability p∗((1−p)3)

6. Continue as required

Tournament selection is very popular in practice. It is easily imple-

mented, the selection pressure is constant and is simply adjusted. In

roulette wheel selection, evolution rate depends on a population’s fitness

variance. This implies that while selection pressure may be high early

on in the process, as fitness values become more homologous in later

generations, selection pressure drops off possibly leading to premature

convergence.

Both roulette wheel and tournament selection are simple, popular

selection techniques amongst a large variety of documented and tested

methods. As with many choices in an EA setup, the choice of selec-
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tion technique can depend on the problem. Difficulties with convergence

rate and local optima can be improved through different combinations of

selection, variation and replacement operators.

Replacement operators will be discussed in Section 3.3.4. Before this

however, two variation operators, namely crossover and mutation are

described.

3.3.2 Crossover

The concept of chromosomal crossover is discussed in Appendix Section

A.1.2. This process produces genetic variation in a population through

the exchange of genetic material between homologous chromosomes and

is the inspiration behind the fundamental GA crossover operator.

P1 P2 C1 C2

Crossover point Crossed-over

0 0 0 1 01 1 1

1 1 1 1 10 0 0

Crossover point (single-point)

P1

P2

0 1 011 00 0

0 11 1 1 1 10

Crossed-over

C1

C2

Biology Genetic Algorithm

Figure 3.3: The images to the left depict crossover between two biological
chromosomes (P=parent, C=child). The right of the diagram shows a
single-point crossover between two GA chromosomes.

The relationship between biological and GA crossover is illustrated

in Figure 3.3. The images to the left of the figure illustrate the crossover

process between two parent chromosomes. The resulting child chromo-
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somes each contain a different combination of genetic material from each

parent. The GA equivalent is shown to the right of the figure, where each

GA chromosome is a binary string. A crossover point is chosen at ran-

dom and all data that occurs in the string beyond that point is swapped

between the two parent chromosomes, producing two child chromosomes.

This is an example of single-point crossover.

A variation of single-point crossover called cut and splice uses separate

crossover points for each parent chromosome. The bits that occur after

these crossover points are swapped, as in single-point crossover, usually

producing offspring individuals of differing lengths.

Multiple crossover points can also be applied to each parent. In two-

point crossover for example, two points along both parent chromosomes

are randomly chosen. The bits that occur between these two points are

then swapped between parents to produce the offspring.

Another alternative crossover technique is called uniform crossover

where each offspring receives equal amounts of genetic material from

each parent. Each bit of the two parent chromosomes are compared and

then swapped with a probability of 0.5.

All of these techniques introduce variety into the population, without

which the evolutionary engine cannot function correctly. Another great

source of variety in both biological systems and GA is mutation.

3.3.3 Mutation

As with crossover, mutation operators are based on the biological mu-

tation process (described in Appendix Section A.1.2). In the biological

process, mutation causes a change in the order of bases in a DNA se-
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quence. Analogous to this, the GA mutation operator changes the state

of a bit in a GA chromosome with some probability, thus introducing

genetic diversity into a population.

For a GA, the most simple form of mutation is called bit-flip. The

mutation algorithm steps along the chromosome, flipping each bit with

some probability. Although in biology there are many types of mutation

(Figure A.3 of Appendix Section A.1.2), the bit-flip mutation most re-

sembles a point mutation. In biological point mutation, a base nucleotide

is replaced with another.

Figure 3.4 illustrates bit-flip mutation. In this example, a string of

32 bits are mutated with a probability of 0.1 (a much higher probabililty

than would be used in practice). The mutated bits are shown in red.

Point mutation
Bit-flip mutation (Probability 0.1)

Biology Genetic Algorithm

1 1 1 1 10 0 0 1 1 1 0 00 1 0 0 1 0 1 01 0 1

1 1 0 1 10 1 0 1 1 1 1 00 1 0 0 1 1 1 01 0 1

Figure 3.4: An illustration of a biological point mutation is shown to the
left of the figure. An example of GA bit-flip mutation is shown to the
right. The 32-bit chromosome is stepped through linearly, flipping bits
(shown in red) with probability 0.1.

The purpose of mutation in GA is to introduce variety, however, the

amount of novel solutions introduced to a population must be restricted

to prevent the search becoming random. An appropriate amount of mu-

tation should prevent the search from becoming stuck at local minima

and prevent severe slowdown of evolution due to lack of diversity.
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The issue of crossover and mutation operators will be explored further

in subsequent sections in relation to Genetic Programming and Gram-

matical Evolution. Before this however, an overview of the replacement

strategies used in most major EAs concludes this section on GA.

3.3.4 Replacement strategies

When new individuals are created, they become part of the next gen-

eration. These new individuals must replace individuals of the previous

generation and there are several strategies for this replacement: genera-

tional, steady-state and elitism.

In generational replacement strategy, parents are replaced by their

children regardless of fitness. An alternative to this is steady-state re-

placement in which every two parents produce two children. One of the

parent individuals is only replaced by its child if that child has a better

fitness score than the worst scoring parent.

An elitist strategy may also be used in tandem with either of these

two techniques. In this strategy, individuals with the best fitness in a

generation are kept on as part of the next generation. All of the remaining

individuals are subject to whatever other replacement strategy is in effect

(generational or steady-state).

GA conclusion

The popularity and success of GA has spawned large amounts of re-

search, refinements, specialisations and related techniques. These other

techniques have enjoyed varying amounts of success. One particular tech-

nique called Genetic Programming which focusses on the evolution of
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computer programs rather than function parameters is discussed in the

following major section.

3.4 Genetic Programming

Like GA, Genetic Programming (GP) follows the EA paradigm. While

GA evolves the numerical parameters of some problem, GP evolves com-

puter programs to perform a user-defined task [22].

The origins of GP can be traced back to Nils Aall Barricelli’s work

with evolutionary algorithms in the 1950s [23]. In the 1960s, Lawrence

J. Fogel used evolutionary algorithms to discover finite-state automata

[60]. Evolutionary algorithms continued to develop throughout the 1970s

through the work of Ingo Rechenberg amongst others [167]. The modern

tree-based method of GP was first described by Nichael L. Cramer in

1985 [43].

In the 1990s, John R. Koza pioneered the use of GP for the optimisa-

tion of complex problems [105]. The power and applications of GP have

grown significantly in the 2000s as available computational power grew

exponentially. GP is now considered a cutting edge search technique that

has been used in electronics design, hardware and software design and

game playing, amongst many others [144, 111, 106, 121].

The computer programs that GP evolves are typically represented as

tree structures. Mathematical expressions encoded in these trees are easy

to evolve and recursively evaluate, as every node in the tree structure is

an operator function and each of the terminal nodes are operands. Tradi-

tionally, languages such as LISP which naturally embody tree structures
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have been used as the GP representation [158]. Certain GP implemen-

tations have also used non-tree representations successfully.

Figure 3.5 presents two example functions. The functional represen-

tation is shown above each tree and its corresponding function shown

beneath. The tree on the left represents a simple mathematical expres-

sion while the tree on the right incorporates a conditional statement.

Note that the if function has three arguments (operands), referred to as

its arity.

*
sin

4 0.5

t�

*

*

+

if

6 x y

x�

<

sin

( * ( * 4  0.5 ) sin( * �  t ) ) ( + sin( 6 ) (if ( < � x ) x y ) )Genotype:

Tree structure:

(4 * 0.5) * sin(� * t) sin(6) + if ( � < x ) x else yFunction/program:

Figure 3.5: Tree representation of two functions. The tree on the left
represents a mathematical function. The tree on the right includes a
conditional operator.

A full introduction to genetic operators and GP in general can be

found in the literature [22, 158]. In this thesis, a simple overview of the

standard GP operators is provided. The selection schemes and replace-

ment strategies described in Sections 3.3.1 and 3.3.4 equally apply to GP,

with tournament selection being the most common.

What does differ from GA is the recombination and mutation pro-

cesses used in GP, as they must deal with the added complexity that

tree structures introduce. The crossover and mutation techniques used
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in GP are described in an upcoming section. Before this however, two

GP initialisation methods are discussed.

3.4.1 Initialisation

GP initialisation is more complicated than that of GA. In GA, initiali-

sation can be simply a case of randomly creating a population of binary

strings. Whilst the individuals in the initial GP population are also usu-

ally random, as tree-based representations are used, the situation is more

complex.

Each individual is a syntax tree and the size of each tree is variable, i.e.

both the structure and content of the tree must be specified and evolved.

When a tree is created, the maximum depth of the tree determines the

maximum size of the program and a maximum tree depth parameter must

be set prior to initialisation. The two simplest types of initialisation are

called full and grow.

Assuming the root node of a tree is at depth 0, the depth of each

node in a tree is calculated as the number of edges between it and the

root node. The depth of the entire tree is determined by the leaf node

with the greatest depth.

Initial populations created using the full initialisation method consist

entirely of full trees; that is all the leaves are at the same depth. An

example of a tree created using the full initialisation method is shown in

Figure 3.6. Each node is created by randomly selecting a function from

the function set until the maximum tree depth is reached. The leaves of

the tree are then randomly chosen from the terminal set.
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5 6 7

Figure 3.6: Full initialisation: steps taken in creating a tree with a max-
imum depth of 2.

In a function set in which all functions have the same arity, all trees

created using full initialisation will have the same number of nodes and

shape. Primitive sets including mixed-arity functions introduce variance

in the number of nodes and shape of a tree. This variety is limited

however, and motivates the use of the grow initialisation method.

In grow initialisation, each node in the tree is selected from the entire

primitive set including both functions and terminals, until the maximum

depth is reached. As with full initialisation, at the depth limit only termi-

nals may be selected. Figure 3.7 shows the creation of a tree using grow

initialisation. By allowing terminal nodes to occur at non-leaf nodes,

entire branches of the tree can be closed without reaching the maximum

depth. Because of this, the size and shape of trees can vary greatly,

leading to an initial population of highly varying programs.

To ensure that a wide variety of initial population individuals are

created, that span the range of trees generated by both full and grow ini-

tialisation methods, Koza proposed ramped half-and-half initialisation
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Figure 3.7: Grow initialisation: steps taken in creating a tree with a
maximum depth of 2.

[105]. This method involves creating half the population using full ini-

tialisation and the other half using grow initialisation. The term ramped

refers to the use of a range of depth limits, further varying the shapes

and sizes of the initial population.

These initialisation methods are popular due to their ease of imple-

mentation and use. The behaviour of grow and full initialisation is highly

dependent on the number of terminals versus functions available and also

the arity of those functions.

Other initialisation techniques are available which address specific is-

sues in GP and it is possible to create initial populations whose trees

embody some domain knowledge rather than being completely random.

The most important aspect of initialisation is variety generation. With-

out variety, the evolutionary process would cease to function. In the

following section we discuss one of two operators which generates variety

throughout the evolutionary cycle.
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3.4.2 Crossover

Crossover in GP involves the switching of subtrees between individuals in

the population. As GP uses a tree-based representation, when a node is

replaced, an entire branch of the tree may be replaced. The replacement

of an entire branch can create a big difference between the expression

encoded in the pre-crossover chromosome and that of the post-crossover

chromosome. This is called subtree crossover and it is the most common

type of crossover used in GP.

*

x 3

-

9 5

/

Parent 1

/

8

y 6

+

Parent 2

*

x 3

-

9 5

/

/

8

y 6

+

*

y 6

+

9 5

/

Offspring

Crossover Point

Crossover Point

Copy

Copy

Figure 3.8: Illustration of GP subtree crossover.

An example of subtree crossover is shown in Figure 3.8. The diagram

illustrates the 4 steps of the GP subtree crossover process, as listed below:

1. Select 2 parent individuals from the population

2. Randomly pick a node from Parent 1

3. Randomly pick a node from Parent 2 (independent of Parent 1)

4. Create a new individual from the subtrees at the crossover points
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As can be seen in Figure 3.8, the offspring individual is created as the

subtree rooted at the crossover point in a copy of Parent 1 is replaced

by a copy of the subtree rooted at the crossover point in Parent 2. The

use of copies of the original parents allow them to participate in multiple

crossover processes, retaining their original state.

Crossover points are not usually selected with uniform probability.

Typically the majority of nodes in GP individuals are leaf nodes and as

such, randomly selecting crossover points from the entire tree can lead

to a large number of crossover operations that swap very small subtrees

or leaves. It was suggested by Koza that when picking crossover points,

functions should be chosen 90% of the time, and leaves only 10% of

the time [105]. This approach to crossover point selection has become

popular.

As with the initialisation techniques discussed in Section 3.4.1, this

form of subtree crossover is one of a large variety of possible approaches.

Similarly, the following section describes two popular mutation tech-

niques, mutation being the other variation operation used in GP.

3.4.3 Mutation

In GP mutation, the detail of a particular node may be modified or the

entire node replaced, affecting the tree structure.

The most common form of mutation in GP is subtree mutation. In

this form of mutation, as shown in Figure 3.9, a subtree rooted at some

randomly chosen point in the individual is replaced by a newly generated

subtree. The steps of the subtree mutation process are given below:
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Figure 3.9: Illustration of GP subtree mutation.

1. Select 1 parent individual from the population

2. Randomly pick a node from that parent

3. Remove the subtree rooted at the selected mutation point

4. Grow a new subtree according to an initialisation technique

5. Place new subtree at the location of the previously removed subtree

Another commonly used technique is point mutation in which the

primitive stored at a randomly selected node is replaced by another ran-

domly chosen primitive. The nature of the original primitive must be

taken into account and the replacing primitive must be of the same arity.

If the nature of the node on which mutation is to take place is not taken

into account, all operations must be made fail-safe.

During point mutation, each node in the individual is visited and

mutated with some probability allowing multiple nodes to be changed

in a single mutation process. When an individual is being subjected to

subtree mutation however, only a single subtree is replaced.
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The actual rate at which operators such as mutation and crossover

are applied is variable. Mutation operators are often applied to less

than 1% of the individuals in a population per generation. In contrast,

crossover rates are relatively high; often set at 90% or more. Depending

on mutation and crossover rates, another operator called reproduction

simply takes individuals of high fitness and copies them into the next

generation.

GP conclusion

The choice of operators and operator rates can be problem-specific and

depend on the GP implementation. The system described in the preced-

ing sections is the most basic GP implementation which was developed

in the late 1980s and early 1990s. Since then many alternative GP im-

plementations and extensions have been proposed [158] and a number of

open issues remain [151]. In the next section, one particular specialisa-

tion of GP called Grammatical Evolution is explored.

3.5 Grammatical Evolution

Grammatical Evolution (GE) is a relatively new type of EA [150, 47]; a

grammar-based specialisation of GP [121].

In GE, the genetic representation is a variable-length binary or integer

string. The evolutionary operators are applied to this genotype, rather

than the phenotype, and this separates the search and solution space.

More recently, operators are also applied to the derivation trees [80].

76



It is this separation that distinguishes GE from most GP systems and

make it attractive for representing solutions to highly complex problems.

The efficiency of the evolutionary search may also improve over an equiv-

alent GP search, as the genotypes on which the GE search is performed

are abstractions of phenotypic solutions into a more compact form.

The use of a grammar facilitates this search-solution space separation.

It also allows for the incorporation of problem domain knowledge and

constrains the search. This is an important quality as GE’s performance

is dependent on its search space size and it is desirable to minimise it.

The grammar’s actual role in the GE process is to map genotypic

strings to a function or program. This process is described in a follow-

ing subsection. Before this however, the implementation and modular

approach of GE is discussed.

3.5.1 Implementation details

GE is modular in its implementation, as shown in Figure 3.10.

A GE system requires a grammar, a fitness function and a search

engine. The fitness function can take any form as long as it can accept a

phenotypic solution and return a numerical score back to the GE system;

a lower score implying a better solution. GE’s modularity provides great

flexibility as the fitness function can be of any level of complexity. The

fitness function can even be a large scale simulation application, as will

be discussed in relation to a real-life application in Section 8.1.2.

The search engine used in the system is also modular. As the GE

search takes place on the same objects as those used in GA, the search

aspect of GE may be left to any existing variable-length EA search imple-
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Modular Construction

Grammar

Search Engine

Fitness Function GE

Final Output

GE Operation

Binary String

Integer String

Program

Grammar

Fitness Function

Search Engine

GE Setup / Initialisation

Stop at termination condition

Figure 3.10: The modular construction of a GE system (left) and the
operation of a GE system (right).

mentation. Other search techniques may also be employed for example,

Particle Swarm Optimisation has been successfully used leading to a hy-

brid system known as Grammatical Swarm [140] and Differential Evolu-

tion (DE) has been used to create a Grammatical Differential Evolution

(GDE) system [139].

On the right side of Figure 3.10, the GE operation cycle is shown. The

system starts with the system setup and population initialisation. As the

initial population is a set of binary, or more recently integer strings, ini-

tialisation is performed, as described in upcoming Section 3.5.4. For each

string in the population, through a series of transcriptions and transla-

tions using a grammar (Section 3.5.3), a phenotypic function or program

is created. These phenotypes are passed to the fitness function module

which returns a fitness score.
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Once all of the individuals in a population are scored, the search

engine module performs its task. The general EA process outlined in

Figure 3.1 of Section 3.2 is followed according to some specific EA search

implementation. Individuals are selected based on the fitness scores,

recombined and replaced in the population ready for the next generation.

From Figure 3.10 it can be inferred that a person attempting to create

a GE system need only implement the mapping process from the integer

list to the program tree. The mapping process will be discussed in detail

in Section 3.5.3. Before this however, it is necessary to explore the form

of the grammar used in GE.

3.5.2 Grammar

The GE grammar is context free and is typically expressed in Backus

Naur Form (BNF). BNF is a notation technique for exactly describing

the syntax of a computer language.

In GE, the BNF representation is used to state a set of production

rules which make up a complete grammar. The BNF grammar is com-

posed of the tuple <T, N, P, S> as presented below (example values are

shown in the curly brackets).

• T is Terminals set { Sin, Cos, Tan, Log, +, −, ÷, ×, X, (, ) }

• N is Non-terminals set { expr, op, pre-op }

• S is Start symbol (e.g. S = <expr>, also a member of N)

• P is Production rules set (described below)

A production rule is in the form<symbol> ::= some expression where

<symbol> is a non-terminal such as those above and some expression is a
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sequence of one or more symbols which can be non-terminals or terminals.

The right hand side of the production rule may contain more than

one expression, each separated by a vertical bar, ‘|’, indicating a choice.

A chosen expression is essentially substituted for the symbol shown on

the left hand side of the production rule.

<expr> : := <expr> <op> <expr> (A)
| ( <expr> <op> <expr> ) (B)
| <pre−op> ( <expr> ) (C)
| <var> (D)

<op> : := + (A)
| − (B)
| / (C)
| ∗ (D)

<pre−op> : := Sin (A)
| Cos (B)
| Tan (C)

<var> : := X (A)

Listing 3.1: Basic grammar with common examples of production rules.

The basic grammar shown in Listing 3.1 includes common examples

of production rules. The parenthesised letters at the right hand end of

each production rule expression are not part of the BNF grammar. They

indicate that each expression represents a choice for the corresponding

terminal or non-terminal.

These production rule choices are fundamental to GE’s aforemen-

tioned translation process. The values in a genotypic integer string are

used in sequence to choose rules from one of these BNF grammars, thus

constructing the phenotype. This mapping process is discussed in the

following section.

80



3.5.3 Genotype-phenotype mapping

As previously stated, GE performs its evolutionary operations on the

genotype. This genotypic string representation describes a solution as

DNA describes a protein. A grammar is used to expand this genotype

into a phenotype, similar to how DNA is expanded into a protein. This

is called the genotype-phenotype mapping process and is illustrated in

Figure 3.11.

Grammar:
<start>     ::= <expr>
<expr>     ::= <expr><op><expr>  
          | <pre-op> ( <freq> )     
          | <var>            
<op>        ::= + | *
<pre-op>::= sin | cos
<freq>     ::= <var> * t
<var>       ::= 1.0 | 2.0 | 3.0 | 4.0 | 5.0

11100001   01100010   10010010   00110011   11001101   01110000   01011001

225

Binary String

Integer String  98 146  51 205 112  89

<start>

<expr>

<expr><op><expr>

<var>

2.0

2.0

*

*

<pre-op> ( <freq> )

sin 

sin 

(<var>   *   t )

(   5.0      *   t )

Transcription

Translation

DNA

RNA

Biological System Grammatical Evolution

Amino Acids

Protein
Function /
 Program

Rules / 
Grammar

Figure 3.11: Genotype to phenotype mapping process with GE example.

In this figure it can be seen that there are correlations between the

steps in a biological system’s genotype to phenotype mapping, and that

of GE. The binary string representation is analogous to a DNA sequence

and the conversion of the binary string to an integer string is comparable

to the transcription process described in Appendix Section A.1.1. The

translation process that occurs in a biological system, in which mRNA

is converted to an amino acid chain that eventually becomes a protein,

is also mimicked in GE.
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In genetics, a codon is a group of three nucleotides in a DNA sequence

(chromosome) which describes an amino acid (Appendix Section A.1.1).

In a GE chomosome, each binary or integer string contains many codons

and each of these codons map to a single production rule choice in the

grammar.

A single binary string codon for example, might be 8-bits long and

therefore transcribes to integers between 0 and 255. A GE implementa-

tion whose genetic representation is an integer string may have a much

larger range of values, e.g. Java integer, 232 bits. For simplicity, the

explanatory examples in this thesis assume an integer range of 28 bits.

The process of converting the integer string into a function or pro-

gram via the grammar, is equivalent to the biological translation process.

The length of the GE chromosome itself is variable and usually capped

at some maximum length. Depending on the implementation, when the

end of the chromosome is reached during the mapping process, the oper-

ation can wrap around back to the start of the chromosome and continue

translating.

An example of the conversion process from binary string to pheno-

typic function is shown to the right of Figure 3.11. Firstly the binary

string is transcribed into its integer equivalent. Then starting at the left

of the integer chromosome, the integer values are translated into elements

of a function or program using the displayed grammar. The grammar in

the figure contains terminals and non-terminal sets that are sufficient to

produce summations of sine and cosine waves that are functions of a free

variable called t and have a fixed range of amplitudes and frequencies.
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The translation process shown in Figure 3.11, begins at the start

symbol which has a single rule, the <expr> non-terminal. This non-

terminal contains three production rules. To select one of these rules,

the leftmost integer value is used, as highlighted in the figure. The inte-

ger value is 225 and there are 3 possible rules. The following calculation

is performed: 225 mod 3 = 0. This result indicates that rule 0 should be

chosen, which is <expr><op><expr>. This process of choosing produc-

tion rules based on the integer string continues as indicated in the figure

until the derivation is complete and the encoded function or program is

obtained.

It should be noted that each codon is polymorphic; its interpretation

depends on its context. In the above example, when mapping the<expr>

non-terminal, the calculation performed is 225 mod 3 = 0. If the same

integer is used to map the <pre-op> non-terminal, the calculation would

be 225 mod 2 = 1.

For a deeper understanding of this translation process, the translation

of the integer string can be visualised using a derivation tree, shown

in Figure 3.12. In this figure an integer string is translated into its

phenotypic function. The derivation process is shown on the left of the

figure consistently following the same process: select the current integer

i in the string; find the number of production rules n of the current non-

terminal; calculate i mod n; the calculated value determines which of

the current terminal or non-terminal’s rules is to be selected.

As the derivation process progresses, the derivation tree on the right

of the figure grows. The figure also demonstrates the wrapping process.

If the end of the integer string is reached before the derivation process has
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54 202 143 71 199 12 125

54 % 3 = 0
202 % 3 = 1
143 % 2 = 1
71 % 3 = 2

199 % 4 = 3
12 % 3 = 0
125 % 3 = 2

54 % 4 = 2
202 % 3 = 1
143 % 2 = 1
71 % 3 = 2

<expr>
<expr><op><expr>
<pre-op>( <expr> )<op><expr>
sin ( <expr> )<op><expr>
sin ( <var> ) <op><expr>
sin ( x )<op><expr>
sin ( x ) / <expr>
sin ( x ) / <expr><op><expr>
sin ( x ) / <var><op><expr>
sin ( x ) / x <op><expr>
sin ( x ) / x * <expr>
sin ( x ) / x * <pre-op>( <expr> )
sin ( x ) / x * sin ( <expr> )
sin ( x ) / x * sin ( <var> )
sin ( x ) / x * sin ( x )

<expr>

<op><expr> <expr>

<pre-op> ( <expr> )

sin ( <var> )

( x )

   / <op><expr> <expr>

  <var>

  x

   * <pre-op> ( <expr> )

sin ( <var> )

( x )<expr> ::= <expr><op><expr> 
      | <pre-op> ( <expr> )     
      | <var>

<op> ::= + 
                |  -
                |  *
                |  /

<pre-op> ::= cos
                        | sin

<var> ::= x

Grammar:
(0)
(1)
(2)

(0)
(1)
(2)
(3)

(0)
(1)

(0)

Figure 3.12: The derivation tree illustrates the translation process. The
integer string is only 7 codons in length and therefore wrapping is em-
ployed to produce a fully derived tree.

completed, i.e. a fully formed tree has not been derived as non-terminals

remain at the leaves, the algorithm wraps around and continues to step

through the integer string from the beginning. In GE there is usually a

limit set to the number of times the algorithm may wrap around. If this

limit is reached without producing a fully derived tree, that individual

is declared invalid. Once a function tree is fully derived however, it can

be visualised as a tree structure similar to the GP tree representation

displayed in Figure 3.5 of Section 3.4.

The genotype-phenotype mapping process is the main distinguish-

ing feature of GE. Other mapping variations are also possible, such as

in πGrammatical Evolution’s position-independent variation on the GE

mapping process [141, 55, 63].

Regardless of the mapping process employed, the selection and re-

placement techniques can be identical to those of GA (described in Sec-
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tion 3.3.1 and 3.3.4 respectively). Other GE processes such as the varia-

tion operators, while perhaps handled by the GA search module, actually

behave as a hybrid of the GA and GP operators. This will be discussed

in a subsequent section.

The initialisation techniques for GE also follow this hybrid approach

and are briefly described in the following section.

3.5.4 Initialisation

A simple choice of initialisation technique for GE would be randomly gen-

erated integer strings. This approach has the drawback that, with certain

grammars, individuals could either be very short or have no guarantee

that they will terminate (invalid individuals).

Ideally the initial population would contain individuals of a range

of sizes. In Section 3.4.1, the GP ramped half-and-half initialisation

method was described and the most popular initialisation technique in

GE is based on this.

Both a start depth parameter and a maximum depth parameter must

first be defined. To ramp the depths of trees in the initial population, a

third variable called the current maximum initialisation depth is calcu-

lated as a value that increases incrementally from the minimum depth to

the maximum depth parameter.

Half of the individuals are created using the full tree generation

method in which only rules that lead to the creation of trees of the

maximum depth are chosen. The other half are created using the grow

method in which rules are randomly chosen until the current maximum

initialisation depth is reached.
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Similar to initialisation, the GE crossover technique may at first

glance appear the same as the previously described GP subtree crossover,

however, an analysis of the derivation process shows otherwise.

3.5.5 Crossover

Subtree crossover in GP was discussed in Section 3.4.2. The process in

GE is similar in some ways, but as the crossover operator is applied to

the genotype, the resultant children are not simply copies of the parents

with a particular subtree swapped [143].

In Figure 3.13, the derivation trees of two parent individuals are dis-

played. The integer string and grammar are also shown. The parent

individuals are subjected to single-point crossover, as indicated by the

dual colours present in the offspring’s chromosomes. This example of

genotypic crossover is the cut and splice GA method described in Sec-

tion 3.3.2. A single point is randomly selected on each of the parent

chromosomes. As can be seen in the figure, although both parent chro-

mosomes are of the same length, the randomly chosen crossover points

indicated by a dashed line produce children of differing length. Due to

wrapping, the lengths of the chromosomes do not influence the size of

the derivation trees, as can be seen in this example.

By stepping through the derivation trees of the children, it is clear

that applying the crossover operator to the genotypes does not provide a

straight subtree swap. The phenotypes of each of the individuals present

are also displayed in Figure 3.13.

The function trees of these phenotypes are shown in Figure 3.14.

This figure shows both the similarities and differences between parent
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<expr> ::= <expr><op><expr> 
      | <pre-op> ( <expr> )     
      | <var>

<op> ::= + 
                |  -
                |  *
                |  /

<pre-op> ::= cos
                        | sin

<var> ::= x

Grammar:

<expr>

<op><expr> <expr>

<pre-op> ( <expr> )

sin ( <var> )

( x )

   / <op><expr> <expr>

  <var>

  x

   * <pre-op> ( <expr> )

sin ( <var> )

( x )

54 202 143 71 199 12 125

Parent 1
21 238 230 224 26 155 9

<expr>

<op><expr> <expr>

<pre-op> ( <expr> )

cos ( <var> )

( x )

 *   <var>

  x

Parent 2

Child 1 Child 2
21 238 230 199 12 125

<expr>

<op><expr> <expr>

<pre-op> ( <expr> )

sin ( <var> )

( x )

 +   <var>

  x

<expr>

<op><expr>

<pre-op> ( <expr> )

cos

   -

Phenotypes

Parent 1:   sin ( x ) / ( x * sin ( x ) )
Parent 2:   cos ( x ) * x
Child 1:   sin ( x ) + x
Child 2:   cos (cos ( x )) - cos (cos ( x ))  

54 202 143 224 26 155 971

<pre-op> ( <expr> )

cos ( <var> )

( x )

<expr>

<pre-op> ( <expr> )

cos <pre-op> ( <expr> )

cos ( <var> )

( x )

Figure 3.13: Illustration of GE single-point crossover with corresponding
derivation trees.

and child individuals. This is due to the variation operator being applied

to the genotype, as restated by the inset diagram.

In GE, it is possible to emulate the GP subtree crossover method using

a restricted form of two-point crossover [80], however, the GP subtree

crossover has been subject to criticism. It has been suggested that GP’s

use of trees negates its use as a biological search method [42]. It has

also been proposed that GP subtree crossover is only marginally more

effective than a system which inserts randomly generated subtrees [13].
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Figure 3.14: Illustration of GE single-point crossover with corresponding
function trees. Note that the crossover operation acts on the genotype
as illustrated in the inset image to the right of the figure.

As has been pointed out above, the GE and GP crossover differ sig-

nificantly as GE performs its operations on the genotypic chromosome.

The GA inspired single-point crossover employed however, has been la-

belled a destructive crossover operator and criticised accordingly. O’Neill

and Ryan detail extensive experimentation on the single-point crossover

method and criticisms of it [150]. They conclude that a biologically

inspired homologous crossover operator designed for GE performed no

better than the standard single-point crossover. Further to this, they

debunked any suggestion that the single-point crossover operator is only

as useful as crossing over randomly generated subtrees [150].

For the purposes of this thesis, we accept these experimental findings

and the conclusion that, in the GE context, the single-point crossover

operator is a very powerful variation operator that drives the GE evolu-

tionary process. The mutation operator has a lesser but still important

role to play in the GE evolutionary process and is discussed next.
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3.5.6 Mutation

The mutation operator used in GE is int-flip as standard. This is iden-

tical to the GA bit-flip mutation method described in Section 3.3.3 and

illustrated in Figure 3.4, except that int-flip operates on an integer string

representation; each codon (integer) is replaced with uniform probability

by a new integer within the set integer range.

The effect of an int-flip mutation on the derivation tree is shown in

Figure 3.15. It can be seen that changing a single integer in the original

chromosome can change the phenotype significantly [85].

<expr> ::= <expr><op><expr> 
      | <pre-op> ( <expr> )     
      | <var>

<op> ::= + 
                |  -
                |  *
                |  /

<pre-op> ::= cos
                        | sin

<var> ::= x

Grammar:

54 202 143 71 199 12 125

<expr>

<op><expr> <expr>

<pre-op> ( <expr> )

sin ( <var> )

( x )

   / <op><expr> <expr>

  <var>

  x

   * <pre-op> ( <expr> )

sin ( <var> )

( x )

54 202 143 71 199 116 125
<expr>

<op><expr> <expr>

<pre-op> ( <expr> )

sin ( <var> )

( x )

   /   <var>

  x

Original Mutated

Original:   sin ( x ) / ( x * sin ( x ) )
Mutated:  sin ( x ) / x

Phenotypes

Figure 3.15: Illustration of GE int-flip mutation with corresponding
derivation trees. A mutation is highlighted in red.

In Figure 3.16, the phenotypic function trees from the example in

Figure 3.15 are shown. The effect of mutating a codon in the chromosome

ripples down through the following codons, as the derivation of a codon

depends on those codons that preceded it. In this example, changing

a single integer in the chromosome terminates the tree’s growth and an

entire subtree from the original individual is replaced by a single terminal.
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x

Mutated subtree

Figure 3.16: Illustration of GE int-flip mutation with corresponding func-
tion tree.

This example of mutation is a good illustration of how a small change

to the GE genotype can lead to a large change in the phenotype. This

feature of GE can have positive and negative results on the evolution

process, depending on the problem domain.

GE conclusion

The description of GE presented here is only an introduction to a topic

on which research is ongoing. The exploration into different mapping

processes such as πGE, mentioned previously [55], continues and a variety

of different grammar types including tree adjunct grammars are explored

in the literature [142, 131, 153, 152, 37]. Topics such as the genotype-

phenotype mapping process [56], grammars [184] and mutation [34] are

analysed whilst alternative crossover techniques and their use with GE

are often proposed [120].

In the preceding sections, we have described the modular implemen-

tation of GE, grammars, the genotype-phenotype mapping, initialisation

and the variation operators employed in a standard GE implementation.
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Where applicable, these topics have been discussed with reference to both

GA and GP, in terms of similarities and differences. What follows is a

discussion on the strengths, weaknesses and applications of the presented

EAs, concluding the natural computing chapter.

3.6 Chapter summary

GA is currently the most popular EA in use today. It has been applied to

a large variety of problem domains including social systems, population

genetics, economics and various optimisation tasks [127]. It has also

been applied to animal locomotion pattern generation as was discussed in

Chapter 2. GA generates solutions by evolving the numerical parameters

to some problem. In some situations, this is ideal. In others, a more

intuitive phenotypic solution representation may be beneficial.

The objective of both GP and GE is to automatically evolve entire

programs to solve some problem. This is a very attractive proposition for

many real-world applications for which GAs are not entirely suitable. GP

has been effectively used to design hardware, software, electronics and

has produced human-competitive results in many other problem areas

[106]. Although a relatively new EA, GE has been successfully applied

to financial prediction [44, 30], game playing [64], music composition

[168] and other applications.

As seen in previous sections, in both Koza/Cramer-style GP and

GE, the phenotypic individual solutions are recursively evaluated treelike

structures. It is the functioning of the evolutionary search that distin-

guishes these two systems.
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In GP, the genetic operators directly manipulate individuals com-

monly represented as LISP-style tree expressions. As discussed previ-

ously, in GE the genetic operators are applied to an integer string which

encodes solutions. These strings are then mapped to their phenotypic

function or program through a grammar. This use of a grammar and the

accompanying mapping process makes it significantly easier to use GE

to search a variety of different structures.

In GE, the separation between search and solution space allows com-

plex problem domains to be encapsulated in a BNF grammar. Through

this grammar, the search space can also be restricted and problem do-

main knowledge incorporated as the composition of the grammar allows

one to bias the search and control the structure of the output phenotypes.

The use of a grammar also avoids the problem of the GP function

set closure requirement, a drawback of the original type-free GP. This

requirement stipulates that each function of the set must be able to accept

the output of all other functions in the set as an argument. Whilst more

modern GP frameworks solve this problem by using a single data type or

type supporting systems with certain limitations, GE avoids this problem

entirely through use of the grammar.

Besides GE’s power to constrain the search, its main strengths lie in

its flexibility and ease of use. Its modularity allows a user to easily exper-

iment with a variety of different search strategies be they evolutionary,

deterministic or any other compatible techniques. As mentioned in the

previous section, research on many aspects of GE is ongoing and there

is a steady flow of new contributions such as mappings, grammar types

and especially applications.
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This thesis is concerned with exploring the use of EAs for generat-

ing animal animations. We have chosen a standard GE implementation,

GEVA [148], as the EA to use in this exploration for two major reasons.

Firstly, the ability to easily create grammars which constrain the search

space and allow problem domain knowledge to be incorporated, make

GE an ideal candidate for the variety of experiments undertaken in this

research. Secondly, GE’s separation of search and solution space render

phenotypic complexities inconsequential and the problem domain asso-

ciated with generating an animal’s motion pattern is large and complex.

Further application-specific details of the GE implementation, grammars

and fitness function will be discussed in relation to specific experiments

in Part III.

In the final chapter of Part I, aspects of biology which can be exploited

for the production of realistic animal animations are discussed.
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Chapter 4

Biology

Animations of a real-life animal can benefit from a knowledge of that

animal’s anatomy and behaviour [203]. The extent of the biological in-

formation required however, depends on the nature of the animation.

Images of animals are so ubiquitous in our everyday lives that au-

diences are highly familiar with physically realistic animal motions. A

morphologically correct model may be visually acceptable in a static

scene but when movement is required, a person can easily identify when

a motion doesn’t “look” or “feel” right [155].

Some situations may simply require an aesthetically recognisable an-

imal. A scene in which an animal is standing still or grazing for example,

may merely require a model constructed from external measurements,

or at least visual estimates, of a real-life animal’s geometry. In con-

trast to this, if a scene requires a highly detailed animation of an animal

in motion, the model must be constrained so that its limbs only move

within the physical limits of the real-life animal’s joints [204]. In addi-

tion to this, its surface geometry can be modified in line with muscle
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contractions, breathing and ground impacts [41]. Underlying muscles

and connective tissues can also be modelled producing motion involving

elastic mechanisms [197].

The research presented in this thesis is concerned with producing an-

imal models that move in a visually and physically plausible manner.

Previously mentioned aesthetic issues such as surface deformations are

secondary to the utilisation of accurate limb motion patterns during loco-

motion. To achieve this, we exploit the findings of the biomechanics field

and use data measured from real-life animals. Before the issue of motion

patterns can be discussed however, some aspects of animal anatomy must

be explored.

A basic knowledge of anatomy is important in terms of this research

and some fundamental anatomical principles are explored in Section 4.2.

Building on this knowledge, details of the equine musculoskeletal system

and allometry are presented in Section 4.3. Shifting the focus from struc-

ture to motion, in Section 4.4, the gaits (patterns of limb motion) and

gait transitions of horses are examined in detail. Following on from this,

the biology chapter concludes with an overview of dynamic similarity

theory.

In advance of an examination of the anatomy and motion of the mod-

ern horse, in the following section, the subjects of equine evolution and

selective breeding are briefly discussed.
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4.1 Equine evolution and breeding

Modern horses are a product of millions of years of natural evolution and

hundreds of years of breeding by humans.

There is huge variation in terms of size and shape between modern

breeds of horse, but although a Shetland pony and a Draught horse have

very different dimensions, they are both of the same species; the domestic

horse (Equus ferus caballus).

Realistic animations of horses require realistic models. Horses are

bred for differing functions and therefore have varying dimensions, pro-

portions, musculature and temperament. These important differences

can be be reflected in the computer model.

The range of differences between horse breeds is a product of artifi-

cial selection by humans, which will be discussed in Section 4.1.2. The

general function of various breeds of horse shall also be described as this

information can be used to create more accurate animations.

In preparation for this discussion of artificial selection, the natural

evolution of the modern horse is briefly described.

4.1.1 Natural evolution

Evidence suggests that the modern species of horse evolved from a small

dog like mammal that lived over sixty million years ago. Through mu-

tation, variation and natural selection the bones, toes and teeth have

changed dramatically over the millennia, yielding the modern horse [117].

Over the course of its evolution, the horse’s ancestors moved from a

forest setting to expanding grasslands. These grasslands provided ample
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grazing for those animals whose teeth could handle tough food. As such,

the animal’s teeth became bigger and adapted in shape. Through mutual

natural selection, plants became tougher, selecting animals with the most

durable teeth and the grazing animals encouraged even tougher plants.

As these ancient animals moved completely from the forests to the

grasslands, they were in danger from predators and consequently their

leg bones began to lengthen to allow for faster locomotion. As the preda-

tors themselves became faster, the horse-ancestor’s legs further increased

in length. Some bones fused together, improving stride power at the

expense of rotation. Further improvements in speed came by standing

permanently on tiptoe. Unneeded toes and other bones shrunk, became

vestigial or disappeared.

As animals of this Equus species moved about the globe, environmen-

tally driven adaptations occurred giving rise to zebras, onagers and desert

asses. One particular Equus species spread across Europe, the Middle

East and Asia, which would eventually be domesticated by humans to

become the modern horse Equus ferus caballus.

The evolution of the modern horse is shown in Figure 4.1. The in-

crease in body size shown in this diagram however, was not a consistently

gradual process over time. Based on studies of the fossil record, the evolu-

tion contains a long period of relative stasis (∼32 million years) followed

a period of change and diversification (∼25 million years) [116].

Whilst the modern horse is a distinct looking animal in many respects,

one of its most striking features is its long limbs which lack musculature

on the lower limb making them lighter. This adaptation makes the horse

excellent at fast running over hard ground.
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Figure 4.1: The evolution of the modern horse. (Image © National
Taiwan Science Education Center [192])

The impressive musculature of the animal’s hindquarters gives it great

strength. Ever since the horse was domesticated (estimated to be around

4000 B.C.), humans have harnessed the horses’ strength to farm the land,

and later, its speed for travel and sport. For hundreds of years, humans

have been selectively breeding horses for specific activities giving rise to

the diverse shape and size of the modern horse.

4.1.2 Breeding

Selective breeding, or artificial selection, is when pairs of animals are

intentionally bred together in order to propagate some desirable trait

which they both share to their offspring.

Humans have been selectively breeding horses for hundreds, if not

thousands, of years and there are over 300 breeds of horse in existence

today. The aim of breeding has always been to improve the performance

of a particular animal at some task, staying true to the phrase “form

follows function”.

Over the years horses have been bred to display specific combina-

tions of traits such as speed, acceleration, manoeuvrability, endurance,

strength, disposition, ridability, stature and aesthetics. Some of these
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traits complimented each other whilst others are more mutually exclu-

sive. A large, muscular horse for example, may exhibit great strength

but this may be at the expense of speed. If the animal is to be used to

pull a plough through a field, great speed is not a necessary trait and the

compromise is justifiable. Conversely, a race horse sacrifices strength for

a lighter, faster body which allows it to excel at its function; winning the

race.

Particular breeds of horse are classified as a certain type based on

form, function and temperament. Draught horses are large animals usu-

ally bred for agricultural labour. A packhorse is generally a smaller

horse or pony, used for carrying items on its back, often over rough ter-

rain. Sporthorses are specifically bred for sporting events such as dres-

sage, show jumping and carriage driving. Hot-blooded breeds, referring

to temperament, are bred for speed and agility and include the highly

popular Arabian horse and Thoroughbred, used for horse racing.

These different types of horse can often be visually identified by their

size and shape [86]. The painting shown in Figure 4.2 depicts a scene

containing several breeds of horse. The Belgian, Noriker and Clydesdale

are all draught horses originally from Belgium, Austria and Scotland

respectively. These strongly built workhorses are still used to this day

for pulling loads and other agricultural tasks.

The Oldenburger is an example of a modern Sporthorse whose middle-

weight body is considered particularly suitable for show jumping and

dressage. The much smaller Dales Pony possesses great stamina. Origi-

nating from Northern England, this horse has traditionally been used as

a pack and artillery animal.
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Figure 4.2: “Pferderassen II” by the 19th Century German master horse
painter Emil Volkers. Image depicts a variety of horse breeds, clockwise
from top-left: Neapolitan, Oldenburger, Noriker, Clydesdale, Dales Pony,
Belgian.

The final horse is the Italian Neapolitan. Similar to modern-day Hot-

blooded breeds, they were historically bred by nobles for transportation

and cavalry. Although a revered horse of the middle ages, the Neapolitan

horse became extinct in 1950 after nearly a century of decline.

When compared to each other as in Figure 4.2, the different types

of horse are quite distinct. Visually, the size of the animal in terms of

height and width may give an observer an insight into its functionality.

Within each classification of animal however, more subtle differences exist

between breed. Length of limb, inclination of a particular bone, shape of

the back and arch of the neck are some of the more obvious differences

between breeds of horse of the same type.
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For animation purposes, it is imperative that the animal model used

reflects the task it is being used for. For example, a heavy Draught horse

galloping in a race and jumping over fences may not be believable to an

audience. Similarly, animations of a scene set in a specific time period

should utilise models that reflect the breeds of horse that were available

at the time.

There are many differences between breeds of horse that are of little

concern to an animator of course. Variations in the number of vertebrae

and some of the smaller bones are often of little consequence to the

animal’s function, however, some seemingly small differences can be an

intentional product of selective breeding for a particular task.

Within a particular breed, there will also be variation between animals

but there is usually a particular set of characteristics that a breeder

strives to achieve, known as the optimal conformation.

Conformation

The optimal conformation of a horse is the set of characteristics relating

to bone structure, musculature and body proportions which should allow

the animal to perform highly at its task whilst preventing injury [84].

Studies of animal conformation can provide skeletal dimensional data

which can be utilised for computer model creation [92]. These studies

can also provide information about how a particular conformation can

affect movement. For example, an understanding of how variations in

length and inclination of a particular bone affect an animal’s motion is

of interest to a breeder attempting to produce a high-class race horse,

and an animator attempting to produce a realistic animation.
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A list of general horse conformation guidelines is presented in Ap-

pendix Section A.2. Information such as this can be used to ensure that

certain aspects of a computer constructed animal are in keeping with the

real-life animal equivalent.

Continuing on the topic of utilising natural observations for realistic

animation, in the following section, the anatomy of a horse is discussed.

4.2 Anatomy

Anatomy is the scientific study of bodily structure [28] and knowledge

of an animal’s internal and external composition can be used to increase

the realism of animal animations [203].

The specific focus of this thesis is cursorial quadrupedal animal ani-

mation. As stated previously, a quadruped is an animal (or robot) that

uses four legs for locomotion and a cursorial quadruped has limb struc-

ture adapted for running.

Figure 4.3: Quadruped types. A reptilian, B non-cursorial, C cursorial.
(Image taken from [126])

In Figure 4.3, taken from [126], three different classes of quadrupeds

are shown; reptilian, non-cursorial and cursorial. The important morpho-
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logical difference to note in these images in terms of locomotion is the

positioning and structure of the limbs in relation to the animal’s body.

Non-cursorial mammals comprise rodents and small carnivores [11].

These mammals tend to weigh under 3kg and run with the humerus and

femur in a near horizontal position. Examples of non-cursorial mam-

mals include ferrets, rats, jirds and coypus (unusually large non-cursorial

mammals) amongst many others.

Cursorial mammals, such as ungulates and large carnivores weigh-

ing more than 3kg, have much straighter legs with the femur and often

the humerus nearer to vertical. Examples of cursorial mammals include

rhinosceroses, horses, camels, wildebeest, sheep, dogs and cats (unusually

small cursorial mammals).

The research and experiments presented in the following chapters fo-

cus specifically on the horse. As horses are dynamically similar to other

cursorial quadrupeds (discussed in Section 4.5), each horse-specific ani-

mation experiment is applicable to the other cursorial quadrupeds, as-

suming the availability of skeletal measurements and other anatomical

information. Anatomical and behavioural idiosyncrasies of a particular

species, for example the spinal flexibility of cats (felidae), can be accom-

modated on a case by case basis.

The horse is chosen for study due to its continued presence in human

society; horses are still used for work, sport and entertainment purposes

[19]. Because of this, much research and data is available on the subject of

horse anatomy. In the following sections, the locations of certain equine

anatomical features are discussed, often using special terminology. A

brief list of these terms is presented in Appendix Section A.3.

103



The horse, as with the vast majority of animals, has a body composed

of multiple distinct tissues. Each tissue has a specific function and those

that are particularly significant in the locomotion system are discussed

in the following section.

4.2.1 Tissues involved in locomotion

A tissue is a collection of specialised cells and products of these cells [28].

An animal’s body comprises many biological systems. Each of these

systems is a set of organs that work together to carry out some function.

Each of these component organs performs a specific task and is made

up of a collection of tissues. There are four basic types of tissue in an

animal: nervous, muscle, connective and epithelial. In terms of animal

locomotion, aspects of the muscle and connective tissues are of interest.

Muscles are the contractile tissues which produce force and, in the

case of skeletal muscle, enable locomotion. The muscle tissue is called

contractile as it can contract on demand, either consciously or uncon-

sciously, as well as involuntarily. Muscles tend to be arranged in oppo-

sition; as a particular muscle group contracts, an opposing muscle group

relaxes. The force that a particular muscle produces is proportional to

its cross-sectional area at its thickest point and the velocity at which a

muscle contracts is proportional to the muscle fibre length. While mus-

cles can dynamically contract, they are distinct from connective tissues

which stretch and contract passively.

Connective tissues are a type of fibrous tissue mainly comprising col-

lagen, a group of natural proteins. Connective tissue can stretch and

contract and its main function is to hold other tissues together. There
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are six main types of connective tissues: loose connective tissue, adipose

tissue, blood, collagen, cartilage and bone. In terms of biomechanics, the

tendons, ligaments, cartilage and bone are the most important.

Tendons which connect muscle to bone are made of regular collagen;

it is called regular as the fibres are lined up in parallel. Tendons are able

to withstand tension and also exhibit certain springlike elastic properties

that passively improve stability during locomotion [5].

Ligaments which connect bone to bone are also made of regular col-

lagen. They are similar to tendons, however, while they exhibit some

elasticity, they lack the springlike properties. The ligaments play an im-

portant role in constraining joint rotation and maintaining body shape

and structure.

Cartilage is also composed of collagen, except the fibres are irregularly

positioned. The strength and flexibility of cartilage allow it to absorb

shock and it is found between vertebrae and at the end of bones in some

joints, amongst other places.

The final connective tissue of interest to us are the bones. Also known

as osseous tissue, bones are a type of hard, rigid connective tissue. Be-

sides being used for support, movement and protection, bones also store

minerals and produce red and white blood cells. The structure of a bone

means that it is lightweight but relatively strong and hard.

Bones come in many different shapes and sizes and the following

section takes a more detailed look at bones and the joints between them.
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4.2.2 Bones and joints

The bones present in a horse’s body are classified into the following

categories: longs bones, short bones, flat bones, irregular bones and

sesamoids [77]. The long bones act as levers used in locomotion and

are mainly found in the limbs. The short bones absorb concussion in the

joints. Flat bones, such as the skull, pelvis and ribs protect the vital

organs whilst the irregular bones of the spinal column protect the spinal

cord. Finally, the sesamoids are bones enclosed within a tendon.

Bones are attached to each other via ligaments and the location at

which two or more bones meet is called a joint. Joints vary in the degree

of movement they allow and are classified as follows:

• synarthrosis - little or no movement, e.g. in the skull

• amphiarthrosis - very small movement, e.g. between the vertebrae

• diarthrosis (synovial) - large range of movements, e.g. the shoulder,

hip, elbow, knee

The joints of the skull, called sutures, are fibrous synarthrosis joints that

allow no movement and over time become bone [157]. The amphiarthrosis

joints connecting the vertebrae are made up entirely of cartilage, allowing

very little movement, which leads to inflexibility in the horse’s back.

In contrast, the diarthrosis joints allow for much freer rotation be-

tween connected bones. The ends of the bones that meet at these joints

are covered in cartilage allowing the bones to slip past each other during

movement whilst synovial fluid, secreted by the membrane covering the

cartilage, provides further lubrication [157].
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The freedom of movement allowed by a particular joint depends on the

type of joint it is and its morphology. A joint’s motion is usually described

using the terminology listed below:

• Flexion: joint-angle decreases along the sagittal plane, i.e. forward

to backward

• Extension: joint-angle increases along the sagittal plane, i.e. back-

ward to forward

• Abduction: movement away from the body’s midline

• Adduction: movement towards the body’s midline

• Rotation: circular movement around a central point or axis

Ball and socket joint

Hinge joint

Figure 4.4: Two common joint types found in a horse’s body. (Inset joint
images © Pearson Education, Inc. 2007)

Using this terminology, the degrees of freedom allowed by the two most

common types of joint, shown in Figure 4.4, can be described. Although

the horse’s body contains many complex joints, in a simplified model,
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the joints that exhibit significant movement can be described as being

either a hinge joint or ball and socket joint.

A hinge joint is analogous to a hinge in a door; it allows flexion and

extension about a single axis. In both humans and horses, the elbows

and knees are hinge joints.

A ball and socket joint is much more flexible. It allows flexion, ex-

tension, abduction, adduction and rotation. In both humans and horses,

the shoulder and hip are examples of a ball and socket joint, as will be

discussed in the following section on the equine musculoskeletal system.

4.3 Equine musculoskeletal system

When producing realistic animations of horses in motion, the most im-

portant aspect of equine anatomy is the musculoskeletal system.

The musculoskeletal system is the system of organs that enables an

animal to move [4]. Also known as the locomotor system, it comprises

the skeleton (bones and joints), ligaments, cartilage, muscles, tendons

and other connective tissues. As well as enabling an animal to support,

stabilise and move itself, the musculoskeletal system gives the animal its

recognisable shape.

The horse skeleton is made up of 205 bones on average [81] and each

body segment of the horse contains a combination of the bones introduced

in Section 4.2.2.

These distinct sections of a horse’s body are described individually in

the following sections.
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4.3.1 Neck and head

The neck is made up of seven cervical vertebrae as shown in Figure

4.5. Counting from the distal end of the neck, to which the skull is

attached, the first and second vertebrae are known as the atlas and the

axis respectively. These vertebrae are anatomically different from the

other cervical vertebrae as they allow a large degree of movement. The

atlas allows the horse the rotate its head up and down whilst the axis

allows side to side motion.

Atlas
Axis

Cervical vertebrae

Thoracic vertebrae

Lumbar vertebrae

Sacrum
Coccygeal vertebrae

Skull

Lumbosacral joint

Figure 4.5: Detailed diagram showing the bones of a horse’s neck, back
and tail.

The other five cervical vertebrae allow the animal to move its neck

from side to side, stretch and arch it. Movements of the neck can sig-

nificantly affect the horse’s balance and centre of gravity. For instance,

lowering the neck puts more weight on the forelimbs and brings the cen-

tre of gravity forward whilst raising the neck increases the load on the

hindlimbs and shifts the centre of gravity backwards [81]. Proceeding in a

caudal direction (towards the tail), the motion of the vertebrae becomes

limited, giving rise to significant stiffness in the back.
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4.3.2 Back and tail

The back is the section of spine running from the neck to the tail as

shown in Figure 4.5. It includes eighteen thoracic vertebrae with almost

no flexibility, six lumbar vertebrae with some flexibility relative to the

thoracic vertebrae and five fused sacral vertebrae with no movement.

Unlike the cervical vertebrae, the vertebrae of the back allow for only

minor movements and this is usually due to hindlimb motion [157]. The

stiffness of the spine allows it to support the thorax and abdomen as well

as protecting the spinal column.

The five sacral vertebrae are collectively called the sacrum and forms

part of the pelvis; the link between the trunk and the hindlimbs. The

lumbosacral joint is a synovial joint between the sixth lumbar vertebra

and the first sacral vertebra. Although it has limited flexibility, it allows

the pelvis to rotate forward under the body during fast gaits like the

canter and gallop, as will be discussed in Section 4.4.2.

The tail comprises eighteen coccygeal vertebrae, decreasing in size

from the first to the last. The first coccygeal vertebra connects directly

from the last sacral vertebra. Like the neck, the tail is very flexible.

Besides being used as a fly swatter, the tail positioning changes as the

horse turns to provide some balance. The tail is also an indicator of the

animal’s emotion.

4.3.3 Forelimb

The bones of a horse’s forelimb are shown in Figure 4.6. As discussed in

Section 4.1.1, a horse has evolved for speed and as such, the limbs are
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Scapula

Humerus

Radius

Metacarpus

Hoof

Pastern

Ulna

Shoulder
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Knee

Fetlock

Pelvis

Femur

Tibia

Metatarsus

Hoof
Pastern
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Fetlock

Stifle

Hip

Patella

Figure 4.6: Detailed diagram showing the bones of a horse’s forelimb
(right) and hindlimb (left). Bone names are shown in black and joint
names are shown in italicised red.

long and the weight of the lower limb is minimised as there is no muscle

below the knee. Motion in the lower limb is produced as contractions of

muscles higher up in the leg are transmitted via long tendons.

Another interesting feature of the forelimb is that it is only attached

to the body by muscles and ligaments. This design allows the forelimbs

to be used as shock absorbers, as during locomotion they withstand large

impacts.

Starting from the top of the forelimb, the scapula is a flattened tri-

angular shaped bone with a typical inclination of 45◦. This angulation

coupled with the bone’s length influence the length of stride. Unlike

humans where the scapula is connected to the body via the collar bone

(clavicle), the horse’s scapula does not have any connection via bone.
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Instead the horse’s thorax, the region of the trunk from the neck to the

diaphragm, is slung between the scapulae by the thoracic sling, compris-

ing muscles, tendons and ligaments.

The humerus is connected to the scapula by a ball and socket joint

called the shoulder. The humerus is angled for shock absorbtion, ideally

at 60◦ to the horizontal. The movement of the shoulder is mainly flexion

and extension, however, some abduction, adduction and rotation also

occurs. The humerus attaches to the radius and ulna at the elbow joint.

The elbow is a hinge joint and only allows flexion and extension along

the sagittal plane. The radius and ulna are fused together in a horse’s

forelimb; the ulna is small relative to the longer radius.

The radius connects to the metacarpal bones at the knee or carpus.

The knee comprises seven or eight small carpal bones which allow it to act

as a shock absorber. Like the elbow, the knee is a hinge joint permitting

flexion and extension along the sagittal plane.

Below the knee, the metacarpal bones comprise two (vestigial) splint

bones and the load-bearing cannon bone. The cannon bone is connected

to the long pastern bone and two sesamoid bones at the fetlock joint

which is a hinge joint with flexion and extension motion along the sagittal

plane.

The lower bones of the fetlock joint, known collectively as the pastern,

comprises the long (first) and short (second) pastern bones. The angle of

these bones should be about the same as the scapula, around 45◦. There

is a joint known as the pastern joint between the long and the short

pastern. Although it is a hinge joint, its movement is very limited.
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The aforementioned sesamoid bones are located at the back of the

fetlock joint and behave as pulleys as the pastern bones are moved by

tendons from the muscles of the forearm (near the radius).

The final major joint of the forelimb is the coffin joint; a hinge joint be-

tween the short (second) pastern bone and the pedal and distal sesamoid

(navicular) bones within the hoof. The distal sesamoid again behaves as

a pulley for tendons stemming from muscles farther up the leg, however,

the coffin joint allows very limited flexion and extension.

4.3.4 Hindlimb

Whilst the forelimb acts to absorb shock during locomotion, the hindlimb

provides the propulsion.

The power and speed of a horse comes from the large muscles of its

hindquarters [19]. These muscles extend from the sacral and coccygeal

vertebrae to the stifle joint. Whilst the lower hindlimb (below the hock)

is anatomically the same as the lower forelimb (below the knee), the

upper hindlimb is significantly different as can be seen in Figure 4.6.

The pelvic girdle (pelvis) includes the sacrum and the first three coc-

cygeal vertebrae introduced in Section 4.3.2. It also includes the two

pelvic bones (os coxae) which form part of the hindlimbs. The pelvis

and the femur meet at a concave surface on the pelvic bone called the

acetabulum, forming the hip joint.

The hip is a ball and socket joint allowing a large range of movement.

The femur which attaches to the pelvis at the hip is a long, strong bone

to which the muscles of the hindquarters connect, providing the animal’s

power.
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The femur connects to the lower bones via the stifle; a large joint

whose main function is to rigidify the hindlimb upon contact with the

ground. A sesamoid bone called the patella is located at the stifle and by

contracting certain muscles, the patella is upwardly fixated and prevents

flexion of the stifle.

The stifle and the hock, described below, share reciprocal action which

means that as one flexes or extends, so does the other. During the upward

fixation of the patella, this reciprocal relationship prevents flexion in the

hock as well as the stifle, however, joints lower in the limb can still be

flexed.

The stifle joint is actually a complex collection of three joints, how-

ever, for simplicity it can be viewed as a single hinge joint with a large

degree of freedom along the sagittal plane. Between the stifle and the

hock runs the long tibia bone. Another bone called the fibula is also

present but its very small size render it essentially vestigial.

At the distal end of the tibia is the hock joint. Although comprising

numerous tarsal bones, the hock has a smaller range of movement than

the knee joint in the forelimb; it absorbs shock by maintaining a constant

semi-flexed state. Below the hock, the limb is anatomically the same as

the forelimb as described in Section 4.3.3.

The skeletal features described here pertain to a fully-grown adult

horse. Whilst the skeletal structure is largely the same regardless of age,

there are some differences. For animation purposes, only those differences

which alter the animal’s aesthetic appearance and its locomotion are of

interest. These changes of structure with age are briefly discussed in the

following section.

114



4.3.5 Skeletal allometry

In biology, allometry is the study of how body parts grow at different

rates, giving rise to differently proportioned bodies depending on an an-

imal’s age [170].

A movie or video game will often require a scene comprising mul-

tiple horses of different ages. An animator may be tempted to take a

single animal model and uniformly scale the entire model to indicate a

younger or older animal. This approach is ultimately incorrect as gen-

erally, animals are not born with the same skeletal proportions as their

fully-grown counterpart. To produce a model with proportions correct

to its age, observations of skeletal allometry can be used.

A mammal’s skeleton does not scale isometrically with body mass. As

the body mass of the mammal increases, the skeleton becomes more and

more massive relative to the size of the body. An in-depth discussion of

allometry is beyond the scope of this thesis, however, there are numerous

published studies which provide valuable data to an animator; a large set

of data for terrestrial mammals relating total body mass to the mass of

the animal’s long bones is available in the literature [35]. Further data on

how bone dimensions scale with body mass is also available [66, 10, 160].

Allometric studies of mammals are a great source of data when one

is constructing an animal model and have helped researchers to estimate

the body mass of extinct animals [51]. Studies of allometry also extend

beyond skeletons and can be used to predict the physiological properties

of other organs [170].
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Equine allometry

Horses are a widely studied animal and growth-rate data is available

through many published studies [188, 74, 99].

F
A B

E
D

G
C

Figure 4.7: Measurement points for analysing growth of horses [188].

Attempting to measure the length of every bone in an animal’s body

in vivo is not possible so instead measurements are taken between var-

ious external points on the body, as displayed in Figure 4.7. Distances

measured include wither height (A), hip-height (B), body length (C),

knee to pastern length (D), hock to pastern length (E), point of shoul-

der to pastern length (F) and depth of girth (G). These point-to-point

distances tend to be standard when assessing the allometry of a horse

and other animals.
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In general, the skeletal segments of animals of the same breed fol-

low a distinct growth pattern, with deviations usually occurring due to

abnormal feeding or environmental factors. Animals of differing breeds

however, will grow at different rates and have a broad weight range, as

illustrated in Figure 4.8.

Figure 4.8: Growth in body weight from birth to 2 years of age. Growth-
rate and body mass is shown for multiple breeds [59]

.

Allometric data can be used to improve the accuracy and aesthetic

realism of a horse animation, provided that data pertaining to the rel-

evant breed of horse is available. If growth or dimensional data for a

specific breed or species of animal is not available, values can be approx-

imated from images and video. The many published studies mentioned

previously in this section could also be used to estimate an animal’s pro-

portions based on body mass.

In Chapter 9 of this thesis, experiments that make use of allometric

data for horses are described, as the issue of how the proportions of a

horse affect its movement is explored.
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In preparation for this and the other experiments concerning equine

motion, the following section describes the basic motion patterns that all

horses use for locomotion, regardless of breed and age.

4.4 Movement

The horse is a terrestrial mammal and like the majority of land animals,

it uses its legs to move from one place to another.

Like most walking animals, horses are quadrupeds and during loco-

motion, muscles contract periodically to produce movement in its limbs.

The motion of the limbs cause the feet, or hooves, to push off the ground

surface, thrusting the animal forwards.

The sequence in which the limbs move is pivotal in the locomotion

process and is referred to as the animal’s gait.

4.4.1 Gait patterns

A gait is a pattern in which the limbs of an animal move during locomo-

tion [90]. Gait patterns describe the sequence and timing in which each

limb pushes off the ground as an animal moves over a solid substrate.

Animals move in a rhythmical manner and as such, gait patterns are

cyclical in nature; a gait cycle begins when a foot contacts the ground

and ends when that same foot contacts the ground again.

During a gait cycle, each limb will experience a stance phase and a

swing phase. A limb is in the stance phase when its foot or hoof is in

contact with the ground. The duration of this contact (as a fraction

of a full cycle) is known as the limb’s duty factor. The swing phase
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commences when the limb breaks contact with the ground and is swung

forward in preparation for its next grounding.

Gaits are usually classified as being either a walking or running gait.

In walking gaits there is always at least one limb in contact with the

ground. Conversely running gaits have at least one period of suspension

in which no limbs are in contact with the ground. The running gaits are

naturally faster than the walking gaits and for legged animals, velocity

is often described in terms of stride length.

Not to be confused with step length, stride length is the distance

between two successive placements of the same foot during locomotion

and is calculated using Equation 4.1.

stride length = velocity / stride frequency (4.1)

The relationship between stride length and the duration of the stance and

suspension phases depend on the gait. Typically, as velocity increases

within a particular gait, the duration of suspension also increases.

In general, a particular gait is efficient over a range of velocities. The

animal can increase or decrease its velocity within that range without

changing (transitioning) to a new gait. Whilst an animal can change its

velocity by simply increasing its stride frequency, velocity can also be

changed through adjustment of its limb extent.

Limb extent is defined here as the distance between the farthest

grounded hoof position attained in the forward and backward directions

along the sagittal plane over a single gait cycle.
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An animal can reduce its velocity by extending its limbs less, and

therefore taking shorter steps, while maintaining a constant rate of steps

per second. Conversely, velocity increases if the animal reaches farther

forward and backward during each step.

All legged animals move with a specific set of gaits which differ among

species. In the following section, the gaits used naturally by the horse

are presented.

4.4.2 Equine natural gaits

A horse has four natural gaits. In order of increasing speed, they are the

walk, trot, canter and gallop.

The footfall sequences of the horse’s natural gaits are presented in

Figure 4.9. For each of the gaits, an illustration of a horse is shown with

values marked adjacent to its limbs. These values indicate the phase

difference between the limbs as a percentage of a full gait cycle. The

presented values are generally consistent among all horses, with some

small variations [19].

The stick diagrams to the bottom of Figure 4.9 graphically display

the footfall sequences for each gait with the black bars indicating a limb’s

stance phase. From this diagram it can also be seen that gaits are de-

scribed as being either symmetrical or asymmetrical.

The walk and trot are symmetrical gaits meaning a left and right pair

of limbs move alternately to each other. Gaits such as the canter and

gallop are classified as asymmetrical, as pairs of limbs move together.

As a pair of limbs is moving during asymmetrical motion, the limb

whose hoof touches the ground temporally after and positionally in front
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Figure 4.9: Top: typical timing of footfalls as a % of a full gait cycle, for
the natural gaits (FL: fore-left, FR: fore-right, HL: hind-left, HR: hind-
right). Bottom: hoof contact with the ground (thick black bars indicate
contact).

of its partner is referred to as the “leading” leg. The other limb of the

pair is known as the “trailing” leg. The horse can change which leg leads

to affect speed and improve balance, especially when turning.

An example of “changing the lead” in the asymmetrical gaits is shown

in Figure 4.10. The diagram graphically displays the difference between

the transverse and rotary canter/gallop as the lead is changed from the

right forelimb to the left forelimb. Horses usually use the transverse

canter and gallop except in horse racing, when use of a rotary gallop can

be approximately five miles an hour faster [173].
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Figure 4.10: Variations of the canter and the gallop by changing the lead-
ing foot (forelimb). The numbers indicate the sequence of the footfalls.

The transverse and rotary versions of the canter and gallop are con-

sidered variations of the same gait despite having different footfall pat-

terns. In the following subsection, other variations of the natural gaits

are briefly discussed.

Gait variations

A horse in motion may move with variations of the natural gaits and

some specific breeds use gaits that are only natural to them.

Often variations of a gait are defined by how the limbs are placed

in relation to the body during locomotion. Limb placement affects the

animal’s centre of gravity and its limb extent which in turn affects its

stride length [36].

The natural form of a gait with normal limb extent and stride length

is often referred to as the “working” form of the gait; the limbs are not

greatly extended allowing the animal to move in a comfortable, sustain-

able manner.

A “collected” gait is one in which the horse carries more weight on

its hind legs and draws its body in on itself. It does this through down-
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ward flexion of the lumbosacral joint, which is called “engagement of the

hindquarters”. Collection is a natural response to danger but can also be

observed in any gait during locomotion. Collection also affects velocity

as the strides of a collected gait tend to be relatively short.

An “extended” gait in contrast employs large limb extensions and

thus the strides are longer and made with great impulsion. As a conse-

quence, extended versions of the faster gaits can include lengthy periods

of suspension.

A “medium” gait lies somewhere between the working and the ex-

tended gait in terms of stride length and impulsion. A horse’s gait can

also be described as being “disunited” if the footfall sequence is irregular

or not matching the pattern that is normally expected for a particular

gait.

The interaction between humans and horses has also introduced a

variety of new gaits and gait variations. In dressage, some breeds of

horse are trained to use unnatural gaits, such as the passage and piaffe.

Other breeds of horse demonstrate idiosyncratic ambling gaits from

birth, such as the Tölt of the Icelandic horse, the Paso of the Peruvian

horse, the Rack of the American Saddlebred and the Fox-trot of the

Missouri Foxtrotter.

Further information about horse gaits is presented in Appendix Sec-

tion A.4, with a list of the most common gaits of the horse and their

characteristics provided in Table A.1. The value ranges for characteris-

tics of the common equine gaits are also presented in Table A.2.

The gait employed by a horse in motion ultimately depends on the

velocity at which the animal wishes to travel. If a change in velocity is
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required, the horse can either alter its limb extent and stride frequency

within its current gait, or it can transition to a different gait. The subject

of gait transitions is discussed in Section 4.4.4. Before this however, the

influence of neck and back movements on balance during locomotion is

briefly discussed.

4.4.3 Neck and back

While a gait is often characterised by its leg movement, each natural gait

has characteristic neck motions which affect balance and stride length.

The neck has an important role to play in locomotion. A horse can

shift its centre of gravity by moving its head and neck, significantly af-

fecting weight distribution and balance. By lowering the head, the weight

shifts forward towards the forelimbs. Conversely, raising the head shifts

the centre of gravity back towards the hindlimbs [157].

During locomotion, the raising, lowering, flexing and extending of the

neck are collectively referred to as “balancing gestures”. The scale and

manner of influence that these gestures have on an animal’s balance and

gait depends on the morphology and conformation of the neck (discussed

in Appendix Section A.2). As well as influencing balance, the Brachio-

cephalius muscle of the neck which runs from the atlas vertebra (close to

the head) to the humerus is largely responsible for pulling the forelimb

forward during locomotion.

The combination of these factors results in distinctive neck motions,

depending on the gait the horse is moving with [81]. A detailed descrip-

tion of the neck and back motions for the natural gaits is provided in

Appendix Section A.5.
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4.4.4 Transitions

Transitions between gaits occur when an animal changes its velocity dur-

ing locomotion.

Although a horse can increase or decrease its velocity by increasing

or decreasing its limb extent, a horse will often transition up or down a

gait rather than adopt extremely long or short steps.

When free, a horse tends to gradually change between adjacent gaits

as its velocity shifts outside its current gait’s range, e.g. halt to walk,

walk to trot, trot to canter etc. In some cases, transitions between non-

adjacent gaits occur; a startled horse may directly transition from a walk

to a gallop for example.

Technically, a change in velocity, or foot placements for balance,

within a particular gait is also referred to as a transition but for this

discussion, a transition refers to a change from one gait to another, and

to or from a halt.

As gaits are distinguished by their footfall sequences, the transition

between gaits involves adjustments of the phase difference between limbs

from one value to another. As the transition is occurring, the horse either

increases or decreases its limbs’ rate of movement to achieve the target

phase difference.

This change of phase can take place over one or more gait cycles. If

the transition takes place over multiple gait cycles, some intermediary

steps may be taken to incrementally change the limb phase difference to

that of the new gait.
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The footfall sequence of a transition is often idiosyncratic to a partic-

ular animal and can be inconsistent. As such there are no set transition

patterns or number of cycles over which a particular transition occurs.

It is also difficult to visually assess how a transition occurs without spe-

cialist equipment.

In general, the pattern of change and time taken to complete a tran-

sition varies hugely depending on factors such as current gait and ve-

locity, target gait and velocity, terrain, breed or habit, however, footfall

sequences for gait transitions have been measured [118, 24, 50, 14, 15].

Cause of transitions

The question of why transitions occur at particular velocities has been

extensively studied in the biology and biomechanics field.

In some studies, experiments have found that the trot-gallop transi-

tion occurs when the peak ground reaction force reaches a critical level

of between 1 to 1.25 times the animal’s body weight [57]. It was also

found that increasing the load on the horse reduces the speed at which

the transitions occurred.

Human gaits are examined to ascertain whether transitions occur to

maintain metabolic efficiency, to reduce ground reaction force or due to

simple mechanical factors [166]. After extensive testing of the walk-to-

run and run-to-walk transitions, it was concluded that humans in motion

transition between gaits to bring ground reaction forces and skeletal load-

ing below some critical force level.

Other studies suggest that the speed at which transitions occur is

related to an optimal metabolic cost of running [94]. The hypothesis
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that the walk-to-trot transition in horses and other animals is triggered

by the dynamics of an inverted pendulum system, and occurs to maximise

metabolic economy, has been validated [75].

A similar study investigating the effect of reduced gravity on the

walk-to-run transition speed of humans also supports this hypothesis

[107]. Using a minimal mathematical model of a biped, the traditional

“inverted pendulum walking” and “impulsive running” were found to

minimise work when moving at slow and fast speeds respectively [183].

The implications of this hypothesis and the observation that the ve-

locity at which transitions occur is relatively equal between many species

of mammal is discussed next in the final section of this biology chapter.

4.5 Dynamic similarity

Dynamic similarity theory postulates that different mammals move in

a dynamically similar manner whenever they travel at speeds that give

them equal values of the dimensionless Froude number [9].

Dynamic similarity theory as summarised above relates to land mam-

mals. In this thesis, unless stated otherwise, all references to an “ani-

mal” in relation to dynamic similarity theory refer specifically to cursorial

quadruped mammals.

Essentially, dynamic similarity theory allows one to predict the gait

characteristics an animal will exhibit when travelling at a particular ve-

locity. The predictions depend on the availability of gait data measured

from another animal; this data can often be found in the biology litera-

ture [9].
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The Froude number upon which dynamic similarity is based relates

velocity, gravity and an animal’s hip-height (the distance from the ground

to the hip). It is calculated by Equation 4.2.

Fr = v2/gh (4.2)

where Fr is the Froude number, v is velocity, g is acceleration due to

gravity and h is height of the animal’s hip from the ground at stance.

The Froude number originated in the naval architecture field, where

it was used to quantify the resistance of a ship’s hull travelling through

water. The Froude number and its development from shipbuilding to

gait analysis is documented in the literature [199].

Dynamic similarity theory is based on the observation that animals

moving at equal Froude numbers have similar gaits, i.e. they exhibit the

following characteristics:

• Limbs move in the same phase relationship

• Relative stride lengths are equal

• Feet have equal duty factors

• Feet exert comparable forces on the running surface

• Costs of transport are relatively equal

In this thesis we are mostly interested in the visible aspects of locomotion.

Issues such as cost of transport are of less concern. The following section

presents details of how dynamic similarity theory is used to predict gait

characteristics which can be used in animal animation systems.
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4.5.1 Predictions from dynamic similarity

Whilst one cannot determine the properties of a gait from an animal’s

Froude number alone, if gait characteristics for another animal travelling

at that particular Froude number are known, then those characteristics

should hold for all other animals travelling at the same number.

Table 4.1: Gaits and corresponding Froude numbers.
Gait Walk Trot Canter Gallop

Froude 0.0 - 1.5 1.51 - 2.5 2.51 - 3.5 3.51 - 4.5
Symmetry symmetrical symmetrical asymmetrical asymmetrical

Table 4.1 presents the natural gaits of the horse and corresponding

Froude number ranges. These values are based upon measurements taken

from large numbers of different cursorial quadrupeds [9].

Table 4.2: Dynamic similarity power law equations.
Prediction Symmetrical Asymmetrical

Fore duty factor y = 0.52 * Fr−0.14 y = 0.52 * Fr−0.28

Hind duty factor y = 0.51 * Fr−0.18 y = 0.53 * Fr−0.28

Relative stride len. y = 2.4 * Fr0.34 y = 1.9 * Fr0.40

The power law equations shown in Table 4.2 are also taken from

the literature [9]. From these equations, the relative stride length and

forelimb/hindlimb duty factor values can be calculated for both the sym-

metrical and asymmetrical gaits.

To predict a value for a particular Froude number, the Froude number

is substituted for Fr in the relevant equation and y refers to the calculated

value. Plots of these values for a range of Froude numbers are presented

in Figure 4.11. The values in this figure are calculated for a cursorial

quadruped (horse) with a hip-height of 1.24524 metres.
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Figure 4.11: Predictions of dynamic similarity theory for a cursorial
quadruped (horse) with hip-height of 1.24524m.: Top-left Velocity versus
Froude number as predicted by the Froude equation. The predicted gaits,
transition points and gait symmetries are also displayed. Top-right Duty
factor versus Froude number. Bottom-left Relative stride length versus
Froude number. Bottom-right Stride frequency versus Froude number.

In the top-left image of Figure 4.11, velocity is plotted annotated with

the predicted gaits shown in Table 4.1. The velocities are calculated using

Equation 4.2 and the Froude range for the gaits is from the literature [9].

In the top-right of Figure 4.11, duty factor values for both forelimb

and hindlimb are displayed. Both fore and hind limbs each have two

power law equations; one for symmetrical gaits and another for asym-

metrical gaits. This accounts for the sudden drop in duty factor values

as the animal transitions from a symmetrical to an asymmetrical gait.

It can also be seen from this figure that as the animal’s velocity in-

creases, ground contact decreases introducing at least one suspension

phase per gait cycle.
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Relative stride length, the ratio of stride length to hip-height, is plot-

ted versus Froude number in the bottom-left of Figure 4.11. It is clear

from the plot that as velocity increases, the relative stride length of the

animal also increases. To calculate the actual stride length, Equation

4.3 is used. From this value we can then calculate the stride frequency

(strides per second) using Equation 4.4.

stride length = relative stride length × hip-height (4.3)

stride frequency = velocity / stride length (4.4)

The fourth image in the bottom-right of Figure 4.11 displays a plot of

the stride frequency. While stride frequency increases with velocity, the

rate of increase is not great. As an animal increases its velocity, it does

not simply increase the rate at which it moves its limbs. The animal

can increase its velocity by extending its limbs farther, achieving greater

reach at each step. This allows the animal to cover a greater distance

per stride without increasing its strides per second.

4.5.2 Discussion and applications

Robert McNeill Alexander has written multiple books discussing various

aspects of animal locomotion and dynamic similarity [6, 8, 4]. In addi-

tion to these, dynamic similarity is discussed specifically in relation to
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the elastic mechanisms involved in animal locomotion [5] and to cost of

transport [7].

The predictions of dynamic similarity are tested through the experi-

mental study of humans travelling in reduced gravity [107, 49, 125]. In

terms of gait analysis, the dimensionless nature of the Froude number is

found to be useful when scaling data between animals of different body

size [156].

In related work that directly pertains to computer animation, dy-

namic similarity predictions are often used to calculate and verify gait

characteristics of a locomotion generation system. These predictions are

used to develop and verify horse gait systems [89]. The efficiency and

accuracy of robot gaits generated using evolutionary algorithms are ex-

amined using dynamic similarity predictions [100].

The uses of dynamic similarity predictions for the experiments pre-

sented in this thesis are discussed in the following summary section of

this chapter.

4.6 Chapter summary

This chapter begins with a discussion of how the modern horse has

evolved through natural and artificial selection. The horse’s muscu-

loskeletal system is then described in detail before issues of equine gait

patterns, motion and dynamic similarity are addressed.

The information presented in this chapter is not simply prerequisite

reading for the experiments presented in later chapters. Many of the

sections and corresponding appendices contain knowledge that can be
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directly and indirectly used for the creation of realistic horse models and

animations.

Information pertaining to a horse’s anatomy, specifically the muscu-

loskeletal system, is crucial for the creation of a realistic animal model.

Detailed bone measurements and information on joint mobility is nec-

essary for the construction of a rigid body model; specific details are

provided in Chapter 5.

Observations of evolution, breeding, conformation and allometry can

be used to augment the realism of a scene. A herd situation for example,

may include a multitude of animals of differing age, sex and breed. This

variance in morphology and motion can be modelled using the biological

observations presented in this chapter, as will be seen in Chapter 9.

Besides using biological data for construction of a model, the gait

patterns and variations described in Section 4.4.2 and Appendix Section

A.4 are used directly in the animation systems presented later in this

thesis.

Furthermore, the dynamic similarity predictions discussed in the pre-

ceding sections are employed in a system that accurately animates a horse

using correct gaits and appropriate transitions, described in Chapter 10.

Dynamic similarity theory is also the key component of the evolution-

ary algorithm’s fitness function used in each of the experiments presented

in Part III. Details of this fitness function are given in Chapter 8.
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4.7 Part I summary

The objective of Part I was to provide all of the prerequisite and related

work for this thesis and in each chapter, decisions regarding direction

and experimental approach were justified.

In the first chapter, animation techniques were discussed and some

seminal papers on the topics of quadrupedal animation and gait gen-

eration were described. At the end of the animation chapter, it was

concluded that EC techniques would be explored for the creation of both

kinematic and physics-based quadrupedal animations.

In the subsequent chapter on natural computing, biologically inspired

algorithms and the field of evolutionary computation were introduced.

Three popular evolutionary algorithms were described in detail and con-

trasted with one another. A grammar-based specialisation of Genetic

Programming called Grammatical Evolution was judged to be the most

applicable evolutionary algorithm for the purposes of this thesis.

In the final chapter of Part I, biological research was presented. In-

formation on bones, muscles and joints was provided for use in the con-

struction of an animal model. The information on gaits and transitions

can be used to reproduce realistic motion in animal animation systems.

In Part III, a series of experiments that employ a Grammatical Evolution-

based approach to generating and optimising gait data for various models

and animation systems is presented. In each case, dynamic similarity pre-

dictions are utilised in the fitness function. Gait pattern data and other

elements of animal locomotion are also incorporated in the presented

animation systems.
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In advance of this, the next part of this thesis describes the con-

struction of kinematic and physics-based horse models. The origins and

representations of the gait data are then discussed and attempts to man-

ually generate and optimise that gait data are subsequently presented.
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Part II

Model creation and manual

gait generation
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In Part II, the construction of the horse models and the use of gait

and motion data to animate them is described. Animation systems which

facilitate the manual generation of motion data are also presented.

In the first chapter of this part, Chapter 5, the data from which a

horse model is created is discussed with regard to its origins and skeletal

simplifications. The construction and animation of both a kinematic and

physics-based horse model is then described.

The gait and motion data used to animate these models is then out-

lined in Chapter 6. Potential sources of this data are explored and the

manner in which the data is represented for the experiments presented

later in this thesis is discussed.

In the final chapter of this part, two separate manual gait data devel-

opment systems are presented; one for kinematic and another for physics-

based animations.

Part II concludes with a discussion of how manual motion genera-

tion is nontrivial and automated approaches are desirable, such as those

explored in the remainder of the thesis.
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Chapter 5

Horse model

As mentioned in Chapter 4, the horse has historically played a significant

role in human society, for both work and pleasure. To this day, the horse

is still prevalent in many aspects of human life. As such, videos and ani-

mations of the horse in motion are abundant in film, advertisements and

computer games. There is also much information available concerning

the horse’s physiology and behaviour, in comparison to other animals.

Taking these factors into consideration, the exploration of quadrupedal

animation approaches presented in this thesis is based upon the horse.

In Chapter 2, various methods for producing quadrupedal animations

were described. It was concluded that both kinematic and physics-based

models were applicable in different situations. It was also decided that

an evolutionary algorithm, specifically Grammatical Evolution, could be

used to generate and optimise motion data for animating these models.

In this chapter, details are provided on how both kinematic and

physics-based models of a horse are constructed. The construction and

animation of the kinematic model, described in Section 5.2, is relatively
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simple in comparison to that of the physics-based model. In Section 5.3

full details pertaining to the construction and animation of an articu-

lated rigid body model of a horse are presented. The creation of motion

in the model using spring forces is also explained. Before the model

construction process is described however, the data from which they are

constructed is discussed.

5.1 Data and animation type

The quality and realism of an animal animation is dependent on how

precisely the model’s real-life animal equivalent is reproduced. Accu-

rately modelling an animal for a computer animation requires some level

of knowledge of that animal’s structure, however, the necessary level of

detail depends on the type of animation that is being produced.

When creating a very basic kinematic animation for example, an artist

might refer to an image of the animal. The image may only show the

animal’s external shape but this could be sufficient to create a 3D polygon

mesh approximation. Motion could be produced through deformations

of the mesh, however, it could be difficult to create a realistic animation

in this fashion.

A more pragmatic approach to animal animation is the hierarchical

kinematic model described in Section 2.2.1. Knowledge of an animal’s

musculoskeletal system can be used to create an articulated figure and

biomechanical motion data could be used to animate it; the creation of

this hierarchical model is of great importance.
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The benefits of using a hierarchical model for kinematic animation

were explained in Section 2.2.1. For physics-based animations, the con-

nectivity of a model is established during the construction process and

enforced by the physics engine throughout the simulation. Neverthe-

less, the hierarchical model approach is still beneficial when positioning

a physics-based model’s rigid bodies, as will be discussed in Section 5.3.1.

Before the construction of these models is described however, the

origins and simplifications of the model data are discussed.

5.1.1 Origins of data

There are many different sources of data that can be used for the con-

struction of an animal model.

Dimensional information can be physically measured from a subject,

if one has access to an obedient animal. This hands-on approach to data

collection is probably unsuitable for most situations.

A more practical source of basic data is an image. The external

proportions of an animal can be measured from an image and if multiple

images of the same animal are available, a 3D estimation of the animal’s

morphology can be made. If there is no point of reference of known

size in the image however, the actual dimensions of the body cannot be

determined.

The motion capture techniques introduced in Section 2.2 can be used

to gather dimensional data from an animal. The motion capture system

identifies the absolute position of the markers attached to an animal’s

body and the dimensions and proportions of that animal can be esti-

mated.

140



The positions of the markers correspond to points on the external

surface of the animal but these values can still be used for animation

purposes. It may also be possible to estimate an animal’s skeletal struc-

ture from this data [101].

Although the motion capture approach is attractive, in many cases it

is prohibitively expensive and fraught with difficulties when non-human

animals are the subject.

Data pertaining to animal anatomy can also be found in publications

from the veterinary and biomechanics fields, amongst others. The data

may originate from non-invasive studies of live animals [163] or through

the dissection of euthanised animals [33].

Source of skeletal data

For the horse models described in this thesis, the skeletal data comes

from Dutch Warmblood horses. This breed is chosen because data is

available and due to its popularity as a riding horse.

Mass data for the individual body segments of a horse is taken from

[33]. This paper provides the mass, centre of mass, density and inertial

tensor for 26 body segments of a horse. The presented data was physically

measured from six dissected Dutch Warmblood horses and an average of

those results is presented. Body segment dimensional data, such as bone

length, is also provided.

The above paper does not provide detailed positioning information

for the bones in the skeleton. Instead, the joint-angles of an average

breed of horse at stance are measured from detailed illustrations [77].

Information regarding ideal conformation, presented in Appendix Section
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A.2, is also used to orient the bones and position the neck during the

model construction process.

5.1.2 Skeletal simplifications for animation

For animation purposes, certain aspects of the musculoskeletal system

can be simplified without compromising on the quality of the resultant

animation.

The most important bones in terms of movement and appearance are

the long and flat bones. The long bones of the legs rotate in the familiar

patterns of natural locomotion and must be modelled appropriately.

Flat bones such as the scapula and pelvis are also very important

in the locomotion process. Other flat bones such as the skull affect the

balance of a physics-based model as well as being structurally important.

Whilst the shock absorbing behaviour of the short bones is biome-

chanically significant, they are visibly static. In a very sophisticated

physics-based animal model, the short bone physiology could be repro-

duced but for the models presented in this thesis, they are not directly

modelled.

Similarly, as the joints between the vertebrae in the spine are almost

static, detailed modelling of the horse’s back is unnecessary.

Practically speaking, the skeleton can be simplified based on the joints

that are to be modelled. For the horse models presented in this thesis,

only the synovial diarthrosis joints are considered. These are the joints

with a large range of movement such as the hip and the knee, as described

in Section 4.2.2.
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Essentially, any set of bones connected by either synarthrosis (little

or no movement) or amphiarthrosis (very small movement) joints are

treated as a single bone segment.

Femur

Hip

Scapula

Humerus

Radius

Metacarpus

Pastern

Hoof

Sacrum (Pelvis)

Tibia

Metatarsus

Pastern
Hoof

Stifle

Hock

Fetlock Fetlock

Knee

Elbow

Shoulder

Thoracic segment

Forelimb joint

Coffin

Head

Coffin

Neck joint

Atlas / Axis joint

Proximal neck

Distal neck

Midneck joint

Lumbosacral

Figure 5.1: Simplified articulated horse model annotated with bone, seg-
ment and joint names. Bone and segment names are shown in black and
joint names are shown in italicised red.

In Figure 5.1 the simplified articulated horse model is displayed and

annotated with names of its bones, body segments and movable joints.

The following list gives details of those bones that have been simplified

to a single segment and any joint adaptations.

• Head: modelled as a single bone segment

• Atlas and Axis joints: single joint between head and distal neck

• Distal neck segment: includes the 1st - 4th cervical vertebrae

• Proximal neck segment: includes the 5th - 7th cervical vertebrae

• Thoracic segment: includes 18 thoracic and 6 lumbar vertebrae

• Forelimb joint: unnatural joint replaces thoracic sling
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• Radius: combination of radius and ulna

• Metacarpus: combination of cannon bone and splint bones

• Pastern (fore): combination of first and second pastern bones

• Coffin joint (fore): immovable

• Lumbosacral joint: between thoracic segment and sacrum

• Sacrum (Pelvis): includes 5 sacral vertebrae

• Tibia: combination of tibia and fibula

• Metatarsus: combination of cannon bone and splint bones

• Pastern (hind): combination of first and second pastern bones

• Coffin joint (hind): immovable

• Tail: omitted

The degrees of freedom of the joints in the simplified model are presented

in Table 5.1. Hinge joints have rotation along the sagittal plane about a

single axis. Those joints marked “ball and socket” are actually modelled

as a slightly more constrained joint for simplicity; the joint is capable of

flexion, extension, abduction and adduction but no rotation.

The actually values used in the construction of the horse models are

presented in Appendix Section B.1.1. The values provided relate to bone

dimensions, angulation and mass. The bone segment mass values are

only required for physics-based model construction, which is described

later in Section 5.3. Prior to this, the construction of a simpler kinematic

horse model is described.
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Table 5.1: Equine joints and degrees of freedom (ball and socket joint
does not allow rotation).

Joint Name Connects from Connects to Type

Atlas/Axis Head Distal neck ball and socket
Midneck Distal neck Proximal neck ball and socket

Neck Proximal neck Thoracic ball and socket
Forelimb Thoracic Scapula ball and socket
Shoulder Scapula Humerus ball and socket

Elbow Humerus Radius hinge
Knee Radius Metacarpus hinge

Fetlock (fore) Metacarpus Pastern hinge
Coffin (fore) Pastern Hoof static
Lumbosacral Thoracic Sacrum hinge

Hip Sacrum Femur ball and socket
Stifle Femur Tibia hinge
Hock Tibia Metatarsus hinge

Fetlock (hind) Metatarsus Pastern hinge
Coffin (hind) Pastern Hoof static

5.2 Kinematic model

As described in Section 2.2, a kinematic model is animated without con-

sideration of the physical forces that cause movement.

The kinematic horse model presented in this section is represented

as a hierarchical kinematic model (see Section 2.2.1). Using the data

presented in Appendix Section B.1.1, the model is created and animated

using OpenGL.

5.2.1 OpenGL

OpenGL (Open Graphics Library) is a graphics system that facilitates

the creation of interactive programs to produce colour images of moving

three-dimensional objects [176].

145



OpenGL is a software interface to graphics hardware. It provides

commands that can be used to specify the objects and operations involved

in the creation of these programs.

Complicated models can be constructed from OpenGL’s small set of

simple geometric primitives which comprise points, lines and polygons.

Other aspects of rendering such as colour, texture and lighting can also

be specified.

The objects of an OpenGL scene are arranged in 3D space and a

camera position from which the scene is viewed can be defined. Once the

mathematical description of a scene is complete, it is converted to pixels

on the screen through a process known as rasterisation.

OpenGL offers three transformation routines for positioning the ob-

jects in a scene; translate, rotate and scale. By applying combinations

of these transformations, objects can be positioned relative to a global

origin or each other.

For hierarchical modelling, the OpenGL matrix stacks can be manip-

ulated so that the transformation routines applied to a particular node

in a tree structure will affect other nodes lower in the tree, thus enforcing

the connectivity constraints discussed in Section 2.2.1.

A more detailed description of OpenGL is beyond the scope of this

thesis, however, the full OpenGL specification is available [95].

In the following section, the construction of a hierarchical kinematic

horse model using OpenGL is described.
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5.2.2 Model construction

The kinematic horse model is constructed using the bone and body seg-

ment data provided in Appendix Section B.1.1.

The data is first put into a quadruped model description file. A

template of this bespoke file format is shown in Appendix Section B.1.2

and an example of the actual file used for many of the horse model

experiments in this thesis is presented in Appendix Section B.1.3.

This data file is then read in by the animation system. The structure

of the file format pertains specifically to a cursorial quadruped animal

and the animation system anticipates data for specific body segments;

namely a trunk, four legs and a necklike appendage.

Each segment can contain any number of bones and a corresponding

number of joints. If there are n bones in a segment, the system expects

(n - 1) joints to be defined. The bone segments each have a type, name,

mass, length, radius and angulation value. For square bones, the radius

value is replaced by width and height values.

Each joint description includes a name, type, set of joint limit values

(see Section 5.3.1) and names of the two bones it is to join. Additional

joint definitions are also provided to describe how the segments them-

selves attach to the trunk segment.

Once the model data is successfully read in, the animation applica-

tion interprets the data as a hierarchical quadruped model and uses the

OpenGL primitives, transformation routines and matrix stack manipu-

lations to construct the quadruped model accordingly.
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Figure 5.2: Model construction: skeletal (left) and skinned (right).

The model’s skeletal structure is displayed in the left image of Figure

5.2. The long bones of the model are represented as a 2D shape com-

prising two lines which stem from a circle around the upper joint, and

taper to a point at the lower joint. Body segments such as the thoracic

segment, sacrum and the hooves are modelled as rectangular cuboids.

The basic wireframe model can be skinned with a realistic looking

3D polygon mesh, as shown in the right image of Figure 5.2. As the

underlying skeleton moves, the mesh will deform with it.

This static model is straightforward to construct with OpenGL; the

hierarchical model is read in from the file and the appropriate transfor-

mations produce a model in the anatomical position. When a model is

constructed in this hierarchical manner, creating an animation is also

relatively simple.
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Figure 5.3: Illustration of how the articulated horse model is represented
as a tree structure. Bone and segment names are shown in black and
joint names are shown in italicised red.

Creating motion in the model

The hierarchical horse model is displayed in Figure 5.3. Motion in a limb

is produced by applying rotation transformations to the nodes (bones)

in that limb’s branch of the tree structure.

Starting from the uppermost node in a limb’s branch, the rotation

of each bone in that limb’s hierarchy propagates downwards through all

the other bones. The model is animated by applying a specific pattern

of rotations to each limb’s bones, for every frame. The entire model is

also translated a calculated distance, horizontal to the ground plane to

indicate locomotion.

For a realistic animation, the bones must be rotated according to

some motion data which will be discussed in Chapter 6.

In the following section, the construction of the physics-based horse

model is described.
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5.3 Physics-based model

In contrast to the kinematic model described in the previous section, the

motion of a physics-based model takes mass and force into consideration.

The physics-based horse model, used in the experiments presented in

this thesis, is constructed as an articulated rigid body model, as described

in Section 2.3. The physics engine used is ODE (Section 2.3.1) and the

graphical output is created using OpenGL (Section 5.2.1).

The data used to create the model is the same as that used for the

kinematic model and the file format is identical.

In the following section, the construction of the physics-based model

is described in terms of ODE geometric primitives, positioning and con-

nectivity.

5.3.1 Model construction

As with the kinematic animation system, the horse model data file, pro-

vided in Appendix Section B.1.3, is read in by the physics-based ani-

mation system. The various bone and segment rigid body objects are

created, positioned and connected together by joints, as described in the

following subsections.

Bones and segments

The long bones of the model are represented using the ODE capsule

geometry. A capsule has adjustable mass, length and radius. The radius

variable determines the radius of the cylinder and the hemispheres which

cap each end.
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Capsules are a suitable choice for the long bones for several reasons.

They resemble the general shape of a long bone but more importantly,

collision detection between capsules and other objects is very efficient

due to their shape. The rounded ends also allow for unimpeded rotation.

Two capsules connected end-to-end can rotate about all axes as long

as a sufficient buffer space is present. This space prevents the capsules

from colliding with each other during rotation. Inserting a space in this

manner is essentially emulating the naturally occurring lubricating liquid

and shock absorbing material found between bones.

For the hooves and trunk of the model, capsule objects are not suit-

able. In the case of the hooves, the capsule object would not provide the

flat surface necessary for interactions with the ground plane. Similarly

for the trunk, a capsule does not provide the appropriate connective sur-

faces, therefore rectangular block objects are used instead. The blocks

are rectangular cuboids with adjustable mass, length, width and depth.

The ODE capsule and block objects are graphically displayed using

OpenGL. The capsules are modelled using the OpenGL Utility Library’s

cylinder shape, capped with hemispheres at each end. The blocks are

drawn using simple polygons.

Segment positioning

Once the properties of the model’s rigid bodies are defined and created,

they can be positioned. The model data file contains no information

about absolute positioning of the bones and segments. Instead, the an-

imation system calculates the positions of the rigid bodies in a pseudo-

hierarchical manner.
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As positional information is initially not available, the vertical posi-

tioning of the trunk is unknown until the vertical height of the limbs is

calculated. As such, the legs, trunk and neckhead segments are treated

as independent hierarchies and constructed separately in some arbitrary

initial position.

Once constructed, the trunk can be vertically positioned based on the

limb heights, and the limbs can be horizontally positioned based on the

dimensions of the trunk. With these segments in place, the neckhead

segment can be positioned relative to the rest of the model.

Bone positioning

Within the individual segment hierarchies, the position of a bone is de-

termined by the position of the point it attaches to on a previously placed

bone.

When specifying the position of a bone, the positional values are sup-

plied to ODE in global coordinates and relate to the centre point of that

bone. The placement of every bone in the hierarchy must be calculated

using the absolute position of the previously placed bone, compensating

for the orientation of both bones.

The hemispherical shape of the capsule’s ends must also be taken

into account. When a capsule is rotated for example, the attachment

point may no longer be prominently accessible for connection, i.e. some

of the rest of the capsule’s hemisphere may obstruct a direct point-to-

point connection. The position of the joining capsule must be offset to

compensate for the impediment of the capsules’ hemispheres.
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Once the position of each rigid body in the hierarchy is calculated,

the bodies are connected together using ODE’s supplied joints, according

to the list of joints shown in Table 5.1 of Section 5.1.2.

This description of the model construction process is simplified but

comprehensive details of the construction process are given in Appendix

Section B.1.4.

Stance and joint limits

When the physics-based horse model is constructed and the simulation

loop begins, the articulated rigid body model simply collapses under the

force of gravity, like the rag doll horse model described in Section 2.3.

To counteract this, at stance, the joints in the model are locked at

their stance angle using ODE joint limits. The joint limits are parameters

of every joint in ODE. They specify the maximum amount of rotation

allowed about each active axis in the joint and a joint can be completely

locked by setting all of the joint limits to zero.

Joint locking prevents the model from collapsing under the force of

gravity, without the application of any torques on the joints. This locking

action emulates a horse’s ability to conserve energy by physically locking

its joints when at stance.

These locks should not be confused with the natural joint constraints

and limits of the horse’s body, which describe the axes and angles through

which a joint can rotate without physical impediment.

These natural limits can be included as a rotation constraint in the

horse model, ensuring that no bone will move into a position that would

be unnatural or impossible for a horse to achieve.
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When movement is required, the locks are released by setting each

joint’s limits to their natural limit values, as specified by the model input

data file. At this point the motion controllers are responsible for moving

the limbs in a specified pattern.

5.3.2 Motion

To produce movement in the model, torques of specific magnitude and

direction are applied by motion controllers about each of the joints in a

limb.

A single interlimb motion controller controls the overall timing of each

limb’s movement, to produce a recognisable gait.

Each limb in the model also has an intralimb motion controller in

command of its bone rotations. The intralimb motion controller must

rotate the bones according to some pattern, so that the resulting limb

movement is aesthetically realistic and helps propel the model at the

expected velocity as its hoof pushes off the ground surface.

For realistic movement, both motion controllers are supplied with

appropriate motion data.

The gait pattern data which is used by the interlimb motion controller

contains limb phase difference values for each of the natural gaits, as de-

scribed in Section 4.4.2. Using this data, the interlimb motion controller

controls the timing of the four intralimb motion controllers.

Joint-angle motion data is supplied to the intralimb motion controllers

and determines the rotations applied to each bone. The origin and rep-

resentation of the joint-angle motion data is discussed in Chapter 6.
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During simulation, a single joint’s motion data for a single gait cycle

is stored as a set of 100 discrete points. Each of these points represents

a target joint-angle for a specific time in the gait cycle. The simulation

steps through these points at a rate dependent on the current stride

frequency value.

At each step, the current angle of a joint is compared to its target

joint-angle. In an effort to rotate the attached bone to this target angle,

an appropriate torque is calculated and applied to the joint.

Torque calculation

A simple to implement and commonly used method for calculating a

torque such as this is the Proportional Derivative (PD) controller [103,

119]. A PD controller outputs a torque proportional to the difference in

position and velocity between the actual and desired states of an object

and therefore provides a simple, low-level control mechanism [113].

A PD controller-based system is reliant on the trial and error tuning

of controller parameters which can be problematic. Alternative methods

can involve complicated inverse dynamics calculations or sophisticated

feedback systems. The simplicity of the PD controller implementation

and behaviour make it an attractive solution for the physics-based models

presented in this thesis.

The behaviour of a PD controller is basically that of a spring-damper

system and will be described as such in the following section.
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5.3.3 Spring-damper system

The torque required to rotate a bone to some target joint-angle is calcu-

lated using a spring-damper equation based on Hooke’s spring law [72].

Hooke’s law of elasticity allows one to replicate springlike behaviour

in a computer simulation. In simple terms, Hooke’s law states that strain

is proportional to stress and is mathematically stated in Equation 5.1.

F = −kx (5.1)

where F is the calculated Force, k is the spring coefficient and x is the

displacement of the end of the spring from its equilibrium position.

The value of k determines the tightness of a spring, with larger values

indicating a tighter spring that will stretch less per unit of force; smaller

values signify a looser spring. According to Hooke’s law, if one were to

extend a spring with a weight on the end and release it, the spring would

oscillate indefinitely about its equilibrium point. In reality, the spring

would eventually come to rest due to a damping force that is proportional

to the difference in velocity between the two ends of the spring [154].

A spring-damper system can be modelled using Equation 5.2.

F = −kx− bv (5.2)

where F, k and x are as above, b is the damping coefficient and v is the

relative velocity between the two ends of the spring. The larger the value

of b, the quicker the object will come to rest.
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The physics-based animation system exploits the fact that Hooke’s

law can be used to calculate a force, that when applied to a bone, results

in a rotation about a joint. Using this property for limb motion, given

the current angle of a joint, the force, or torque in this case, required to

rotate the attached bone to some target angle can be calculated.

The specific spring-damper equation used in the physics-based system

is presented in Equation 5.3.

T = −kx− bv (5.3)

where T is the calculated torque, k is the spring coefficient, x is the

current displacement from the joint’s target joint-angle, b is the damping

coefficient and v is the current angular velocity of the attached bone.

The greater the distance between the current joint-angle and the tar-

get angle, the greater the magnitude of torque required to move the bone

to its target position.

Provided that the spring and damper coefficients are set appropri-

ately, the motion controllers can keep the bones rotating towards the

angles suggested by the target data, at every time step.

This spring-damper approach can produce smooth, natural looking

motion, however, there is one major drawback. Each joint in the model

must have its own set of appropriately set spring and damping coefficients

and calculating these values is nontrivial.
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Figure 5.4: The effect of spring-damper coefficients with values set too
low (left) and set too high (right).

Simulation instability

In Figure 5.4, the effect of incorrectly set spring coefficients in the physics-

based horse model is illustrated. The image on the left shows the horse

model being simulated with some of its joints’ spring coefficients set to

too low a value.

In this example, the target joint-angles are constantly set to the

model’s stance angles and the joint locks are removed. The torque values

calculated by the spring equation are insufficient to hold the body up

against gravity and the model sinks to the ground.

Video 5.1 Spring values set too low

Video 5.2 Spring values set slightly too low or too high

Video 5.3 Spring values set correctly

Video 5.4 Spring values set too high

Video 5.5 Spring values set too high (slow motion)

In the right image of Figure 5.4, the simulation has become unstable and

has exploded. In this case, a spring coefficient is set to too high a value
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in at least one joint. At some point in the simulation, the displacement

of a joint from its target angle may have become quite significant, and

the torque calculated by the spring-damper equation was correspondingly

large.

When the torque was applied about the joint, it may have caused

the joint to overshoot its target. At the next timestep, a restorative

torque, in the opposite direction, may have been applied. This dynamic

continues for a number of time steps, exacerbating the problem, until

the torques being calculated are so large, the joints of the model can no

longer hold together and the simulation explodes.

Ideally the spring and damping coefficients will be set for each joint

so the attached bones smoothly rotate to within a very small distance

of their target angle at each timestep. The exact values necessary to

achieve this can depend on several factors.

The position of a joint in the limb hierarchy has significant influence

on the spring and damping coefficients. As each bone in a limb has its

own mass and angular velocity, as a joint attempts to rotate its attached

bone, it may be doing so with or against the momentum of the entire

hierarchy at that point in time.

Other contributing factors include ground reaction forces and the

degree to which the joint has to flex and extend depending on the motion.

In Chapter 7, the manual setting of these spring and damping co-

efficients is described using a manual physics-based motion generation

environment. Automated approaches to coefficient generation are also

discussed in Chapter 9.
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5.4 Chapter summary

The chapter begins with a discussion of the sources of data that can be

used in the construction of horse models for computer animation.

One specific source of data is described and details are given as to how

that data is simplified for use in model construction. Using this data,

the construction of a hierarchical kinematic horse model is described and

OpenGL is introduced.

Following on from this, the construction of a physics-based model is

described in detail and its motion generating system using spring-damper

equations is presented.

The chapter concludes with mention of the issues arising from setting

spring-damper coefficients which will be discussed in later chapters.

The models described in this section are used for the experiments

described in Part III and also in the manual motion generation environ-

ments introduced prior to this in Chapter 7.

In advance of this, the actual motion data that these models use for

animation is discussed in the following chapter.
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Chapter 6

Gait motion data and

representations

Motion data measured from animals can be used to increase the realism

of an animation. In this chapter, the data that determines how the

individual bones in a model are rotated is discussed. This type of data is

referred to as motion data or joint-angle data. This is distinct from gait

pattern data which simply states the phase difference between the limbs.

The motion data can be anything from a simple set of visual observa-

tions of animal movement to complex measurements of skeletal motion.

Biomechanical knowledge can also be used to calculate how certain seg-

ments of an animal’s musculoskeletal system behave. Once a set of data

is compiled, it must be represented in a manner that the animation sys-

tem can interpret. In general, data representations should be convenient

to use, compact and ideally intuitive.
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In the later sections of this chapter, several motion data representa-

tions are presented. Firstly however, the origins of the motion data used

for the experiments in this thesis are discussed.

6.1 Data origins

In an ideal situation, an abstract model exists that allows for the calcu-

lation of the individual bone motions necessary to produce movement,

for any gait and for any given skeleton. Unfortunately, no such model

exists and therefore some form of motion data must be acquired and

standardised to a format and representation that an animation system

can use.

As realism is imperative, animation approaches that rely on human

interpretations of animal movement are disregarded. Instead, the focus

is on taking measured motion data from a reliable source and providing

it to the animation system’s motion controllers in an appropriate format.

This motion data can be obtained from various sources including

photographs, video, motion capture and data published in the biology

and veterinary literature. In the following sections, each of these data

sources is discussed.

6.1.1 Photographic

Often a still image of an animal in motion can yield more information

than real-life visual observation or a video. A single photograph of an

animal in motion literally gives a snapshot of an animal’s physical state at

a point in time. Whilst some information can be taken from an individual
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image, a fuller view of animal motion is found within the context of the

frames that precede and follow it.

The study of animal motion through high-speed photography was pi-

oneered by Eadweard Muybridge and Étienne-Jules Marey in the late

1800s. Marey, a French scientist, studied the motion of animals initially

by way of physical instrumentation and subsequently through photogra-

phy [118]; in 1882 he developed the field of chronophotography. Using a

bespoke chronophotographic gun, Marey was able to capture twelve con-

secutive frames of an animal’s motion on a single image. These composite

images were then used to study the motion of many different animals.

A decade prior to this, in 1872, the question of whether a horse at

gallop experienced a suspension phase was a hotly debated one; Marey

himself had written at the time that a galloping horse does experience

a brief moment in which all hooves are off the ground simultaneously.

The quest for a definitive answer prompted the 19th century English

photographer Eadweard Muybridge to produce high-speed photographs

of animal locomotion [38].

To capture the motion of an animal, a series of cameras were posi-

tioned side-by-side along a runway. Thin silk tripwires were then stretched

across it and attached to triggers on the cameras. An animal subject was

coaxed into running along the runway and as the animal progressed, its

legs tripped the silk wires, causing the cameras to take a picture at the

same instant.

In the photographic example shown in Figure 6.1, it can be clearly

seen in the second frame that a galloping horse does indeed experience a

period of suspension [136], finally answering a longstanding question.
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Figure 6.1: A Muybridge photograph of a galloping horse [136].

The high quality and extensive collection of Marey and Muybridge

images are still considered to be an invaluable resource to biology and

veterinary researchers, as well as to artists and animators.

For this thesis, the Muybridge photographs were considered as a po-

tential source of motion data, however, it was experimentally determined

that manually extracting data from images is time-consuming and inac-

curate as the simple kinematic animation listed below illustrates.

Video 6.1 Animation from Muybridge photographs

An automated approach for extracting motion from raw videos is the

subject of ongoing research, however, this continues to prove a very dif-

ficult task [155]. Consequently, motion capture techniques persist as a

popular source of motion data.
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6.1.2 Motion capture

Full 3D motion capture can yield highly accurate motion data measured

directly from a subject. The motion capture of an object involves the

sensing, digitising and recording of that object as it moves. The anima-

tions produced from this data are often highly realistic [123].

The motion capture subject is usually instrumented in some way so

that the key features on the body can be detected and recorded. These

key feature positions are matched to corresponding points on a computer

constructed model which then moves according to the recorded motion.

Although there is a large amount of human motion capture data freely

available or procurable at low cost, the same cannot be said for animals.

Before the motion capture process can begin, an animal must be ob-

tained that will produce a desired motion on demand, or can be trained

to do so. When capturing gait pattern motion data, large animals such as

horses are often trained to run on a treadmill. The animal’s performance

can be unpredictable however, and the capture process can be fraught

with difficulty. Figure 6.2 shows several still images from a motion cap-

ture driven horse animation. This animation of a bucking horse is an

example of an animal misbehaving during a motion capture process.

Figure 6.2: Motion capture of a horse. The sequence of images shows a
horse bucking intensely.
Video 6.2 Motion capture horse model
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Some companies specialise in the production and sale of animal mo-

tion capture data, but it is often prohibitively expensive. For the vast ma-

jority of animals, motion capture data is simply unavailable and unattain-

able.

Other less expensive 2D motion capture techniques are also possible

but their practicality and quality of results are unknown.

A 3D real-time physics-based model of a trotting horse, whose motion

data is extracted from a 2D video motion capture of a horse using an

active contour technique, is described [119]. The quality and expense of

this approach are undisclosed and it is stated that there are problems

with interlimb occlusion due to the 2D nature of the motion capture.

A cine-radiographical system is used to capture the gait cycles of a

hedgehog [200, 138]. Using an x-ray machine, a glass screen, a brightness

amplifier and camera, the locomotion of a hedgehog on a treadmill is

captured. Again, the quality of the captured motion is unknown and

this x-ray machine approach is probably unsuitable for larger animals.

Overall, a motion capture approach to animation can produce highly

realistic results if it is possible to capture the subject’s motion. The cost

of motion capture however, is prohibitive in many cases.

In the following section, the use of the data that is found in research

publications is discussed.

6.1.3 Published

In the past century, animal gaits have been studied and analysed in

considerable detail. Consequently, significant amounts of motion data

are published in the biological and veterinary literature.
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This data can be extracted and used for the animation of animal

models. Unfortunately, the data may be non-uniform, noisy and it is

often measured from multiple animals of different breed, conformation,

size or sex.

Any extracted data must undergo a process of formatting and stan-

dardising. Once the acquired data is in a suitable format however, it may

still not be immediately usable for animation.

It is often the case that morphological information is unavailable for

the animal from which the data was measured. The extracted data must

therefore be adjusted to “fit” a particular computer constructed model.

Manual tuning of this data is an inaccurate and tedious process of

trial and error, as will be seen in Chapter 7. It is possible however, to

use the untuned, raw data as the basis for automatic motion generation.

This automatic process will be discussed in Part III as all of the

presented experiments are concerned with automatic motion generation.

Data source

The motion data used as the basis for all experiments in this thesis is

taken from published joint-angle data plots which relate to the forelimb

[17] and hindlimb [18] of a trotting horse.

The actual plots and details of the motion data are provided in Ap-

pendix Sections B.2.2, B.2.3, B.2.4 and B.2.5.

Each plot shows a specific joint’s angular motion for the duration of

a gait cycle. Data values are extracted from each of the plots using a

software application [29] which allows for the sampling of plotted data at

regular intervals along the x-axis. This set of extracted values is the basis
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for all of the manual and automatic gait data experiments presented in

this thesis.

The unoptimised motion data does not provide a stable gait cycle

with which the physics-based horse model described in Chapter 5 can

locomote. This can be cleary seen in the animation listed below.

Video 6.3 Published horse motion data (unoptimised)

Before the data can be used by the animation system (such as in the

above video) the data values must be converted from their raw form. In

the following section, several different representations for this data are

discussed.

6.2 Representations

The motion of a bone can be described by a sequence of discrete values,

each of which representing the bone’s orientation at a point in time.

Motion data stored in this manner can be directly used by an anima-

tion system which steps through the data and rotates a model’s bones

accordingly.

This idea is illustrated in Figure 6.3. The set of numerical values

shown represent the angular motion of a single bone, sampled at regular

intervals. The corresponding motion curve is plotted beneath.

The articulated bodies shown in this figure demonstrate how the dis-

crete values can specify a bone’s rotation. If this sequence of rotating

bone images are viewed in quick succession an animation is produced.

168

http://www.james-e-murphy.ie/Videos/6_3_published_motion_data_unoptimised.mov


0.0   20.9    42.9   56.9    61.1   56.9    47.7   37.7    30.6    27.9    29.4    32.6    34.7   33.0    26.9   17.5     7.1    -1.2   -5.3   -4.8    -0.9

Figure 6.3: A sequence of discrete values are shown as a curve. The bone
angles represented by this motion curve are illustrated by the articulated
bodies shown in the bottom of the figure.

This approach to motion data representation is perfectly valid and

simple to produce. The motion data discussed in the previous section,

for example, consists of a small set of numerical values which describe a

curve.

By interpolating between these values, a bone angle value can be

calculated for each animation timestep and the model can be moved

accordingly.

The sample data shown in Figure 6.3 describes a single motion se-

quence, for a single bone in a specific model. If one wishes to modify and

reuse this data however, the numerical representation can prove prob-

lematic.

To change the shape of a motion curve, multiple values in the set

must be changed in a manner that preserves the natural smoothness of

the curve whilst producing the desired motion. This is a nontrivial task

and a more intuitive data representation is desirable for this reason alone.

It would be possible to avoid this data modification problem entirely

by storing a large library of motions in this numerical representation but

as mentioned previously, large sets of data pertaining to a single animal

are unavailable.
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The solution to this lack of motion data, and a major topic of this

thesis, is the development of motion generation approaches. In the later

chapters, we present several methods for taking a single piece of motion

data and tuning it for use with multiple models, therefore using it as a

template for generating numerous different motions.

This reuse process is based upon the optimisation of motion data.

When motion data is stored as a set of simple numerical values, each

value is an optimisation parameter. This results in a huge search space

which includes a great number of invalid solutions, largely due to the

smoothness constraint.

For this reason, it is desirable to describe each bone’s motion by a

smaller set of parameters, which minimises unnecessary information and

reduces the search space.

In the following sections, two motion data representations are pre-

sented. In Section 6.2.2, a representation in which a curve is described

by its distinguishing features is detailed. Before this, a summation of

sinusoids representation is discussed.

6.2.1 Sinusoids for cyclical motion

A bone’s motion data can be represented as a summation of sinusoidal

functions of differing frequencies and amplitudes.

The rotation of a bone about a joint is often the product of multiple

muscles pulling on it and these muscles tend to relax and contract in a

sinusoidal manner. The waveforms in a summation of sinusoids motion

data representation are analogous to a muscle’s contribution to a bone’s

rotation.
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Sinusoidal representation

a(t) = 2.0*sin(�*t)

b(t) = 1.0*sin(2*�*t)

c(t) = 0.5*sin(3*�*t)

d(t) = 0.75*sin(4*�*t)

y(t) = a(t) + b(t) + c(t) + d(t)

t

a

t

b t

y

t

t

d

c

Figure 6.4: Summation of sinusoids motion data representation. The
functions a(t), b(t), c(t) and d(t) are added together to give y(t) which
contains the rotation data for a single bone for a full gait cycle.

The summation of sinusoids representation is illustrated in Figure

6.4. In this figure, four separate sinusoids of differing frequencies and

amplitudes are added together. The resultant waveform can be used to

represent a bone’s rotation as a function of time.

This representation is more compact, elegant and intuitive than the

numerical equivalent discussed in the previous section. It also allows for

intuitive adjustment of the motion data through the addition of sinusoids

of differing frequencies and amplitudes. By ensuring that each sinusoid

added to the summation has the same phase value, the resulting wave-

form is always cyclical, which is important if a single set of waveforms is

to be repeatedly used for sustained locomotion.
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Before any data can be modified however, the raw numerical descrip-

tion of a motion curve must first be converted to a summation of sinusoids

representation. This is done by Fourier analysis.

Fourier analysis

Fourier analysis is a process by which a signal can be decomposed into

separate sinusoidal functions for a range of frequencies [31].

The sinusoidal nature of muscle motion suggests that the motion data

naturally lends itself to Fourier analysis as illustrated in Figure 6.5.

SIMPLIFIED JOINT-ANGLE CURVE

RECONSTRUCTIONDECOMPOSITION

∑

ORIGINAL JOINT-ANGLE CURVE

Figure 6.5: Fourier analysis decomposes motion data into a number of
sinusoidal functions whose parameters are used to represent the motion
data.

A Fourier transform is applied to a motion data curve represented by

a sequence of numbers, such as that shown in Figure 6.3. This process

yields a set of separate sinusoidal functions of differing frequencies and

amplitudes, as is illustrated in Figure 6.5.
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Although this set of sinusoids describes the motion data curve, the

representation can not be described as minimal as there are still a large

number of parameters involved.

To simplify the representation, only the most influential sinusoids

are recombined to form the minimal motion data representation. The

amplitude of each sinusoid is examined and if it is below some specified

threshold value, that sinusoid is discarded, as illustrated in Figure 6.5.

This process may seem arbitrary and lossy, however, this minimal

representation is more intuitive. It reduces the optimisation search space

and is easily derived from a grammar, as will be discussed in Part III.

The data that will be optimised should be viewed as a template of

animal motion. The most influential peaks can be considered as the ma-

jor muscles involved in locomotion. The smaller details of the curve that

are discarded may be the result of less significant muscles, interference

from other muscle groups or propagating forces from ground impact.

The summation of sinusoids representation is excellent for storing

repetitive cyclical motions such as gait cycle motion data, however, for

the acyclical motion data used for gait transitions, described later in

Chapter 10, a piecewise representation is used.

6.2.2 Piecewise for transitional motion

The piecewise representation describes a motion curve by dividing it into

a series of segment types, each with a position and value.

An example of the piecewise representation is presented in Figure

6.6. In this example, the same sinusoidal curve as shown in Figure 6.4 is

represented in the piecewise form.
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START  0  MAX  3.05  19  MIN  1.39  44  MAX  1.73  60  MIN  -0.28  91  WAVE  0  100  END

Piecewise representation

START (0)

MAX (19)

MIN (44)

MAX (60)

MIN (91)

WAVE (100)

END

values positions

{ { { { {
Figure 6.6: A piecewise representation string is presented and plotted
with annotations. This string contains rotation data for a single bone for
a full gait (transition) cycle.

The piecewise description of a motion curve is displayed at the bottom

of the figure. Segment names are shown with their values and positions.

The plot of the curve itself is annotated with lines indicating which sec-

tions of the curve correspond to each segment.

The majority of the segments are modelled using sections of a sinu-

soidal waveform calculated using Equation 6.1.

s(t) =
sin(t · π − π

2
) + 1

2
(6.1)

where t is a uniformly varying input from 0 to 1. The output s, is

also in the range 0 to 1 but rather than changing uniformly, it starts

off slowly, then speeds up and then slows down again [155]. The same
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shape of curve, but starting at 1 and moving to 0, can by calculated with

Equation 6.2.

s(t) =
sin(t · π + π

2
) + 1

2
(6.2)

Time

D
is
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Figure 6.7: The curve segment calculated by Equation 6.1 is shown on
the left. This segment is highlighted in relation to a longer sine wave on
the right.

In Figure 6.7, the curve produced by Equation 6.1 is plotted in the left

image of the figure. The same curve is then shown highlighted as part of

a longer sine wave in the image on the right.

In the piecewise representation, a curve is usually totally described

using a combination of the segments calculated by Equations 6.1 and 6.2.

The following subsection provides a summary of the piecewise segment

types and the parameters they each take.

Segment types

In the following list, the various features and parameters of the piecewise

representation are described.
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In each case, a segment’s starting value is the last calculated value of

the previous segment. With the exception of PLATEAU, the length of a

segment is the difference between the previous segment’s ending position

and the position value of the current segment.

START value:

the curve’s initial offset is defined by value

MAX value position:

curves up to value using Equation 6.1

MIN value position:

curves down to value using Equation 6.2

WAVE value position:

curves in either direction to value using Equation 6.1 or 6.2

PLATEAU value start position end position:

maintains a constant value between start position and end position

END :

representations end with this feature

For the PLATEAU segment type, a WAVE curve is automatically

used to join the previous segment’s value to the PLATEAU value at the

PLATEAU’s start position.

The feature names MIN, MAX and WAVE may appear redundant,

however, they serve a purpose.

Assuming all curve segments, with the exception of the PLATEAU,

should be sine wave segments, the segment’s value and position param-
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eters, along with the previous segment’s value, should be enough to de-

termine the direction of the segment i.e. curving up or down.

The reason that the feature names are included is to make the rep-

resentation more human readable and to allow motion constraints to be

enforced during optimisation.

Take for example an optimisation process that may only modify the

numerical parameters of a piecewise representation’s features and those

features are “START ... MIN ... ... MAX ... ...”,

By including the feature type names, the range that a value can be

changed to is limited. The value of MIN for example, is not permitted

to be larger than the value of the last segment. Similarly the value of

MAX can’t be smaller than the value of the last segment.

Use of piecewise representation

Besides performing parameter optimisations on piecewise represented

motion data, entirely new motion data can also be created by concate-

nating multiple feature types with parameters chosen from a range ap-

propriate to that feature’s context.

The advantage of the piecewise representation is that it can represent

acyclical motion and be easily modified. Figure 6.8 shows an acyclical

piecewise data representation connecting two offset cyclical waveforms.

As previously discussed, the motion data of a gait cycle is cyclical,

however, different gaits may exhibit different bone motion patterns. The

waveforms that represent these patterns may therefore be offset from one

another. A waveform that is to join the offset cyclical curves will have

to be acyclical.
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GAIT GAITTRANSITION
cyclic acyclic cyclic

Figure 6.8: Acyclical piecewise representation connects neighbouring si-
nusoids with differing initial offsets.

The issue of acyclical data will be described further in Chapter 10

when the issue of gait transitions is discussed.

6.3 Chapter summary

In this chapter, the origin of motion data for use in the animation of

animal models is explored.

In the first section, three separate potential sources of data are in-

troduced namely photographic, motion capture and published. It is con-

cluded that extracting data from photographs is time-consuming and

inaccurate. Current methods for extracting motion data from video are

immature and unreliable.
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The use of video techniques is further explored in relation to motion

capture. Although the animations that result from using motion capture

data are often of very high quality, for the vast majority of animals,

motion capture is prohibitively expensive or potentially impossible.

The final data source explored is the data published in biological

journals, which is freely available and easily extracted. It is concluded

that although this data is not directly usable for animation purposes due

to its numerous varying sources and potential incompleteness, the data

can be used as the basis for motion data generation and optimisation.

In the second part of this chapter, several representations for this

data are presented. The use of motion data in a raw numerical form is

discussed in advance of giving details of two alternative representations

specifically targeted at motion data optimisation.

The first representation presented utilises a summation of sinusoids

to represent the cyclical motion of a bone during a gait cycle. The second

piecewise representation involves a segment by segment description of a

curve, which is well suited to representing acyclical data.

Both of these representations will be discussed again in Part III when

a series of experiments are presented which use the models described

in Chapter 5 and the data described in this chapter to automatically

produce animal animations.

Before these automatic methods are presented however, in the final

chapter of this part, we present manual attempts at motion data gener-

ation for both kinematic and physics-based animations.
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Chapter 7

Manual motion data

optimisation

In this chapter, two manual motion generation systems are presented;

one for kinematic animation and another for physics-based animation. In

advance of the evolutionary computation-based automatic motion gen-

eration approaches that are presented in Part III, in this chapter, the

precursors to those systems are discussed.

The manual motion generation systems described in the following

sections not only allow for the development of basic motion data, but

they ultimately provide the motivation to develop automated techniques.

The physics-based system includes a combination of visualisations and

motion editing tools, providing all that is required to create motion for

the physics-based horse model described in Chapter 5. The kinematic

animation system in contrast can be viewed as a simple tool to aid in the

understanding of the relationship between a single joint’s flexion and an

entire limb’s motion.
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7.1 Kinematic CMA

The Curve Modifier Application (CMA) is a visual, interactive program

that enables a user to see the kinematic motion produced in a limb from

user supplied data.

Figure 7.1: Curve Modifier Application (CMA): screenshot shows the
bone motion curve visualisation (left) and limb animation (right).

A screenshot of the CMA is shown in Figure 7.1. The application

displays the output animation for a single limb alongside a visualisation

of the bone rotation curves.

Each curve has a colour that relates to the colour of its correspond-

ing bone. As the system steps through the gait cycle motion data, the

limb is animated and an indicator travels along the length of each curve,

indicating the current stage of the gait cycle.

The user selects a single limb to be animated, which is constructed

from the quadruped file format described in Appendix Section B.1.2.

Motion data files in the summation of sinusoids representation can

be input to the application. The corresponding motion curves and ani-

mation will be displayed for the selected limb. To alter the motion, the
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input data file must be manually modified and the changes can be viewed

in the application.

A more interactive motion adjustment method is possible if the input

data is in the piecewise representation. When data in this form is input,

it can be modified in real-time as the animation is running.

7.1.1 Interaction

When using a piecewise representation, the user can select a curve to be

adjusted and then modify it as the animation is running.

To adjust the data, a particular feature of the piecewise description

is first selected. The value and position of that feature can then be

dynamically changed. This process is illustrated in Figure 7.2.

START -5 MAX 15 39 WAVE -5 100 END START -5 MAX 40 39 WAVE -5 100 END START -5 MAX 40 70 WAVE -5 100 END

Original Change value Change position

Figure 7.2: The leftmost image shows a single motion curve and its
piecewise description. The other images show a value change (centre)
and position change (right) for a selected feature.

In the example shown in Figure 7.2, only a single motion curve is

displayed and the piecewise description of the original curve is shown

underneath the leftmost image. Using specific keystrokes, the user selects

a feature to change. In this case the first and only MAX feature is selected

and its value is changed.
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The effect of this value change can be seen immediately in both the

motion curve (centre image) and the animation (not pictured). The user

then makes another modification to the position of that same feature.

This has the effect of elongating the curve segment that slopes up to this

MAX point, as can be seen in the image on the right.

This dynamic modification of the motion data is relatively simple

when using a piecewise representation. A similar approach with the

sinusoidal representation would be less predictable for the user, as there

would potentially be a larger number of parameters and it would be very

difficult to intuitively modify a single section of the motion curve.

Regardless of representation however, manual motion adjustment can

be a complex problem and the CMA provides visualisations to aid the

process.

7.1.2 Visualisations

The main visualisations provided by the CMA are the motion curves and

the limb animation, which are shown in tandem.

Although it is difficult for a user to focus on both visualisations at

the same time, the animations repeat indefinitely and the relationship

between the motion curve and the model limb’s motion can become ap-

parent within a few gait cycles.

In Figure 7.3, the relationship between a motion curve and a bone’s

rotation is illustrated. The set of images show the state of both the curve

and the limb at six successive points in a gait cycle.

Prior to the commencement of the animation, the motion data corre-

sponding to each bone in the selected limb is converted to a sequence of
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Figure 7.3: The relationship between a motion curve (white) and a bone’s
rotation is displayed. The blue arrows indicate the current point in the
gait cycle.

100 discrete values. Each value represents the bone’s angle at a point in

the gait cycle. When the animation is started, the system steps through

these values and the bone is rotated accordingly. The motion of the

scapula of a horse’s forelimb is shown in Figure 7.3.

The other visualisation provided by the CMA is the hoof motion

bounding box. It can be difficult for a human to visually comprehend

the region in space that a hoof moves through while it is moving quickly.

To address this issue, the hoof leaves a fading trail that clearly shows the

path of its motion. This trail can be seen in Figure 7.4.
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1 2

3 4

Figure 7.4: The sequence of images shows the CMA’s dynamic bounding
box as it is established at the first gait cycle. A fading trail following the
hoof’s motion can also be seen.

Also shown in Figure 7.4 is a bounding box. During animation, the

limb itself does not translate horizontally or vertically. This allows the

motion of the hoof to be bounded.

In image 1 and 2, the limb is moving for the first gait cycle. As the

hoof moves for the first time, a bounding box is expanded to the limits

of the hoof’s motion area. As the animation moves to the next cycle,

the blue bounding box is coloured black and remains static, as defined

by the last cycle. For this current gait cycle, a new blue bounding box

is expanded, as shown in image 3 and 4.

This visualisation is of use when modifying motion data dynamically

as the change that a particular adjustment makes to the hoof’s movement

can be instantly compared to the previous cycle.
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7.1.3 Applications

The CMA is a convenient way to visualise motion data and see the effects

of certain modifications in real-time.

For producing a kinematic animation, the CMA can quickly enable

an animator to produce recognisable animal motions. The manual gener-

ation of motion using this system is based on trial and error however, and

the results, while aesthetically acceptable, are not necessary realistic.

In addition to the features described in this section, the CMA has

been extended for use with an automatic kinematic motion gait genera-

tion system, which will be discussed in Chapter 10.

For the manual production of realistic animal motions, the data mod-

ification options offered by the CMA are limited. In the following section,

a more fully featured motion data development application for physics-

based animation is described.

7.2 Physics-based MDDE

In this section, the Motion Data Development Environment (MDDE)

is presented. Designed primarily for physics-based animal animations, a

user can edit motion data and visually evaluate the resultant animation in

real-time. When creating physics-based animal animations, using motion

data measured from real-life animals in motion can increase the realism

of resultant animations.

As discussed in Chapter 6, this motion data may not have been

measured from an animal with proportions matching the computer con-

structed model. In addition, the data may be noisy as a consequence
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of the original measuring process or the extraction-conversion operation.

The motion data must therefore be adjusted for use with a particular

model and the MDDE enables a user to do this in an intuitive manner.

By displaying the data and animation in tandem, the relationship

between the motion data and the resulting motion is emphasised. A

range of visualisations also helps a user to understand the effect that a

particular adjustment of the data has on the model’s motion.

MDDE component overview

The MDDE has three main elements; the animation display, the data

visualisations and the interface, as shown in Figure 7.5.

Animation

Visualisation

Interface
Figure 7.5: The Motion Data Development Environment (MDDE) with
the animation, visualisation and interface components clearly marked.
Video 7.1 Motion Data Development Environment

The animation displayed in the MDDE is created with the physics-

based animal animation technique described in Sections 2.3 and 5.3, using

OpenGL (Section 5.2.1) and ODE (Section 2.3.1).
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The visualisations are also created using OpenGL and are discussed

in Section 7.2.3. The application’s interface is constructed using the

OpenGL User Interface Library (GLUI) which is easy to use, OS inde-

pendent and provides all of the MDDE’s controls [162].

7.2.1 Interface

In this section, aspects of the MDDE’s interface are described.

A

B

C

Animation Display

Viewpoints

Balance Method

E
Simulation Parameters

D
Direction/Gait Control

Figure 7.6: Annotated screenshot of the Motion Data Development En-
vironment (MDDE).

The interface gives the user control over the viewpoint, the model’s

movement and simulation parameters. A screenshot of the MDDE is

shown in Figure 7.6 and the labelled features are described below.

A The animation display shows the model’s movement in real-time.

B There are several dynamically selectable predefined viewpoints.

C Model features such as balance technique can be switched in real-time.
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D The gait and direction of the model can be controlled.

E ODE simulation parameters can be adjusted through the interface.

Other aspects of the animation can also be modified in real-time

through controls on the interface panels.

The rotation sphere and arrow buttons on the interface’s navigation

panel provide full 3D navigation of the scene. As a user examines the

model in motion, the input spring-damper coefficients can be modified

for each joint through the interface, as will be discussed in Section 7.2.4.

In terms of motion, the gait pattern of an animal can be selected

from those specified in an input file. The interface also allows a user to

manually adjust the phase differences between limbs. In this manner,

the effect of novel gait patterns can be explored.

The most important feature of the interface however, is its facility for

letting a user configure the motion curve display and editing windows,

which are described in the following section.

7.2.2 Animation and motion data editing

As described in Chapter 5, the physics-based horse model is constructed

from input skeletal data using the ODE primitives, and displayed using

OpenGL.

A list of the input data files required by the MDDE is provided in

Appendix Section B.3.1. The animation process begins when a gait pat-

tern is selected via the interface and the user initiates the simulation.

When the simulation commences, the input motion data pertaining to

the selected gait is loaded.
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This motion data is supplied in the discrete value representation dis-

cussed in Section 6.2. As each bone’s motion data only consists of the 20

data points sampled from the published joint-angle plots, a cubic B-spline

interpolation technique is employed.

In mathematics a spline is a function that is defined by polynomials

in piecewise manner. A basis-spline or B-spline is a generalisation of a

Bézier curve (a type of parametric curve) [161]. The interpolation of the

data points is shown in Figure 7.7.

Original data points

Modified data points

Cubic B-spline interpolation

Cubic B-spline interpolation

0 100

1000

Figure 7.7: The images on the left show a plot of some data points. The
images on the right show a cubic B-spline interpolation of those points.
The effect of editing a data point (larger, green point) can be seen in the
resultant interpolation.

The images on the left of Figure 7.7 show the data points of an input

motion file. In the lower left image, a point has been selected and modi-
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fied (the larger, green point). The effect on the interpolation can be seen

in the bottom-right plot.

By interpolating between the data points, the data for a gait cycle

is represented by 100 values instead of 20. This allows for a smoother

animation as each of these data points represent a bone’s rotation at a

particular point in a gait cycle.

Using a cubic B-spline interpolation ensures that even after a signifi-

cant modification of the data points, a smooth discretised motion curve

is always produced. Once interpolated, this data can then be used by

the motion controllers in the manner described in Section 5.3.2.

Motion editing

Once the simulation is running and the physics-based model’s animation

is displayed, the motion data can be viewed and edited in real-time.

In Figure 7.8, two visualisations of the motion data are presented.

The visualisation shown at the top of the figure is a real-time updated

plot of the motion curve for a selected joint, with other relevant data also

displayed. This visualisation provides an abstract view of the attached

bone’s motion, complementing the animation display.

The MDDE’s main purpose is to allow a user to modify the motion

data and view the resultant animation in real-time. The motion data

editing visualisation is shown in the bottom image of Figure 7.8.

Using the interface options, a user can select a motion curve to edit.

As can be seen in Figure 7.8, the regularly spaced red dots represent the

motion data points and the smooth grey curve is the most recent cubic

B-spline interpolation of the data.
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Current bone angle
Target bone angle

Spring coefficient
Damping coefficient

Current / target curves

Joint name

Data point

Data point curve

Cubic B-spline curve

Modified point

Joint name

Real-time motion curve visualisation

Motion curve editing interactive visualisation

Figure 7.8: The top image shows a visualisation of a joint’s motion curve.
The bottom image shows the interactive motion curve editing window.

The user selects one of the red target motion data points to edit. The

selected data point, which turns green, can then be dragged up or down

to modify its value. When the data adjustment is complete, the data is

re-interpolated and the adjustment’s effect on the model’s movement can

be immediately observed and assessed.
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Direction and balance

The systems for motion data generation presented in this thesis all per-

tain to locomotion of an animal in a straight line. The MDDE however,

also bestows its quadruped model with basic direction control. A user

can request that the model turn left or right by a specified angle. In

response, the model moves an appropriate limb, during its ground con-

tact phase of the gait cycle, away from the midline of the body while

maintaining contact with the ground.

The model rotates in response to the turning force which has prop-

agated through the limb from this pushing hoof. The abducted limb is

then moved back towards the midline during the transfer phase of its

gait cycle. This method of direction control is reasonably effective and

mimics the natural turning technique of a real horse [81].

The model can also use a combination of balancing techniques in-

cluding foot placement and minor correcting forces. Balance is always

an issue for physics-based models, as alluded to in Section 2.4.2, but one

that is not addressed in this thesis. Generated motion data is expected

to have some inherent stability, however, during sustained locomotion

the model will fall without a balancing system.

A very basic foot placement-based balancing technique is implemented

and selectable in the MDDE. Whilst effective considering its simplicity,

it is in no way a substitute for a robust approach to balance. As such, the

physics-based horse models presented in this thesis are balanced through

the application of minor corrective forces throughout the gait cycle.
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7.2.3 Visualisation and verification

Visualisations of motion data can allow a user to examine a model’s

movement in great detail.

While a visual analysis of an animal animation can give an indication

as to whether the model is moving in a realistic manner, it is also impor-

tant to closely examine individual aspects of the motion. In the MDDE,

this is made possible through the provided motion data visualisations.

The most obvious visualisation is the animation of the horse itself.

Its stylised appearance clearly shows individual bone movement alongside

the other motion data visualisations.

A user can configure the visualisation window to display a combina-

tion of six different visualisation types namely: motion curve, motion

curve edit mode, limb reach, hoof lift and hoof timing/contact. A com-

bination of these visualisations can be seen in the screenshot shown in

Figure 7.6.

When a user edits the shape of a motion data curve as discussed in

the previous section, features of motion such as stride length and duty

factor will be affected. As the sequence of rotations in the articulated

limb is changed, the motion path of the hoof will also change.

The visualisations shown in Figure 7.9 each relate to limb and hoof

motion. The limb reach-visualisation plots the extent to which a selected

limb reaches back and forth in real-time. This is useful for assessing how

changes in the motion data affect the length of the model’s step.

Another similar visualisation is also available that plots the lateral

motion of a limb. This is useful when investigating directional and bal-
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Hoof lift visualisation Hoof timing and contact visualisation

Limb reach visualisation

Figure 7.9: Three limb motion visualisations relating to limb and hoof
motion.

ancing motion techniques. A third limb motion visualisation in the same

vein, plots the vertical motion of the limb’s end effector (hoof) and can

be important for assessing a hoof’s ground contact.

Hoof movement and contact

The quality of contact that the hoof makes with the ground is of high

importance. From a visual inspection of an animation, it may appear

that all hooves are making contact with the ground, pushing evenly as

they are drawn back and then smoothly drawn forward for the next step.

Often while the general movement is correct, the hoof is in fact skip-

ping along the ground. This skipping effect is wasteful of energy and

introduces an unwanted bounciness in the model’s gait. The dynamic
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nature of the skipping also means that an individual hoof may exert

forces that are disproportionate to the other hooves during a single cy-

cle. This difference can introduce directional and balancing problems.

The vertical and horizontal motion of a hoof can be monitored using

the hoof-lift visualisation, shown in Figure 7.9, and adjustments to the

motion data can be then made as necessary.

The position and timing of the hooves’ ground contact also has a

major affect on an animal’s locomotion, direction and balance. The fi-

nal visualisation shown in Figure 7.9 addresses the temporal aspect of

the hooves’ ground contact. Included in the hoof timing visualisation is

an illustration that depicts the hooves’ positions relative to the model’s

trunk and indicates when each hoof is in contact with the ground. A

stick diagram displays ground contact information for the most recently

completed cycle, highlighting exactly when each hoof made contact and

the persistence of that contact.

In the following section, some successful applications of the MDDE

are described, concluding this chapter.

7.2.4 Applications

The MDDE provides the tools that enable a user to manually assess and

modify motion data.

Initial attempts at animating a physics-based horse model were dif-

ficult as data was unavailable. By creating a system in which even very

raw data could be crafted into a sustainable gait, usable data was cre-

ated through a process of continuous refinement. In this final part of the

chapter, some of the successful applications of the MDDE are recounted.
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One of the first challenges in manually producing motion data was

the setting of the spring-damper coefficients, introduced in Section 5.3.3.

Spring-damper coefficients

Before the process of manually tuning motion data for the physics-based

horse model could begin, the spring-damper (s-d) coefficients needed to

be set for each joint in the model.

Unfortunately, without motion data it is difficult to test potential s-d

values. Exploiting the MDDE’s ability to restrict or isolate individual

bones in each limb, a rough set of values were assembled which could

rotate each bone and its connected bones through a simple sinusoidal

rotation without causing instability in the simulation. The rough set

of s-d values was then improved upon through use of the raw, untuned

motion data.

The bone rotations measured from a real-life animal are more compli-

cated than a simple sinusoidal rotation. The quick changes in direction of

a curve caused the rough s-d values to be insufficient in some instances,

and cause instabilities in others. The model could not move stably using

the raw data so the s-d values were tuned for one limb at a time, while

the rest of the limbs remained static.

A simplified view of the motion system has a set of springs pulling

the bones of the model to target angles specified by the motion data. If

a particular spring is not strong enough, i.e. its spring coefficient is set

too low, the corresponding bone’s motion curve visualisation will show a

disparity between the bone’s actual rotation curve and that of the target

motion data.
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   Current / target curves

   Joint name

   Current curve

   Current bone angle
   Target bone angle

   Spring coefficient
   Damping coefficient

   Joint name

   Spring coefficient
   Damping coefficient

   Current bone angle
   Target bone angle

   Target curve

Figure 7.10: Two different examples of joint motion curve plots. The top
visualisation shows that the target and actual angle of a bone are in syn-
chrony. In constrast, the bottom visualisation shows disparity between
the target and actual curves.

This problem is shown in Figure 7.10. The top “Elbow” visualisa-

tion shows the actual motion curve (white) and target curve (red) in

synchrony indicating that the s-d values are set correctly for this joint.

In the bottom “Shoulder” visualisation however, the curves are out

of sync indicating that the s-d values are incorrect. The erratic motion

of the white curve indicates that the joint’s spring forces are unable to

control the shoulder’s motion as it is subjected to ground reaction forces

and the momentum and inertia of other bones.
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When a spring coefficient is set too low, the result is often a lag be-

tween a bone’s motion and the target motion. In some extreme cases, en-

tire curves of the target data can be missed by the underpowered springs.

One may be tempted to set the spring constants to a very high number

to ensure this lag does not occur, however, this often results in the sim-

ulation becoming unstable.

Sometimes an over-tight spring attempts to shift a bone to its target

position at such a rate that the damping factor of the equation cannot

moderate the sudden increase in speed. A complicated combination of

corrective spring and damping forces may be applied over the next few

timesteps. These forces can accumulate and grow until the simulation

explodes.

This was a constant issue with the manual s-d variable tuning process

but using the motion curve visualisations it was possible to correctly tune

each joint’s s-d values for the horse model, one leg at a time. With this

set of s-d values, the motion data could then be tuned. There were some

additional adjustments made to the s-d values, as the model’s locomotion

process changed the dynamics of the system.

Ultimately a set of s-d coefficients were assembled that are used in the

majority of the experiments presented in Part III. One exception to this

will be seen in Chapter 9 where an automatic s-d coefficient generation

system is presented.

Neck motion

The MDDE visualisations have also proved useful in detecting a correla-

tion between the neck movement and skipping in the hind legs.
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A static neck made the model front heavy. As a result the back hooves

were skipping along the ground instead of thrusting the model forwards.

In experiments where the neck was set to move in various ways, it was

clear that the skipping was prevented if the neck reared backwards during

the hind hooves’ stance phase.

This neck movement shifts the centre of gravity of the model back-

wards and with more weight concentrated on the hindlimbs, the hooves

made greater contact with the ground surface. This better contact in-

creased the pace of the model, lessened the bounciness of the gait and

improved direction control.

Ground interference

It was also observed that the model was not moving at the expected

pace. Upon checking the hoof-lift visualisation, it became apparent that

at the end of a limb’s stance phase, as the hoof was being drawn up and

forward for the next step, that hoof was impacting the ground surface.

This short contact with the ground and the associated friction was

significantly reducing the model’s momentum. The motion data was

adjusted and the pace of the model increased to the expected level.

Basic motion data

Through use of the MDDE, motion data which describes a basic trot for

the physics-based horse model was created. The process was tedious and

time-consuming but the produced motion does resemble what is seen in

nature and allows the horse model to move using only the forces generated

by its hooves against the ground surface.
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The ultimate result of the MDDE is a manually produced piece of mo-

tion data that, in this thesis, can be considered the benchmark to which

the automatic approaches presented in Part III should be compared.

7.3 Chapter summary

In this chapter, the manual tuning of motion data is explored for both

kinematic and physics-based horse models.

In the first section, a kinematic visual motion data editing system is

presented. The Curve Modifier Application (CMA) allows a user to edit

motion data whilst viewing animations of that data’s motion curves and

consequent limb movement.

The input motion data, in a piecewise representation, can be dynam-

ically modified and the effect on hoof movement can be examined with

the aid of a hoof motion bounding box visualisation.

In the second half of this chapter, the Motion Data Development

Environment (MDDE) is presented. This system is primarily for use with

a physics-based model, such as the horse model presented in Chapter 5.

The system offers sophisticated control over the physics-based ani-

mation and provides user-configurable visualisations, to assist in motion

data modification.

The chapter concludes with a detailed description of how the spring-

damper coefficients for the physics-based horse model are manually set.

It is also noted that the MDDE was successfully used to manually tune

motion data for the horse model.
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7.4 Part II summary

The objective of Part II was to describe the construction and animation

of the kinematic and physics-based horse models.

In the first chapter of this part, the construction processes were de-

scribed. The origins of the data from which they are built was also

discussed. OpenGL was introduced and the complexities of creating mo-

tion in a physics-based animal model using a spring-damper system was

examined.

In the following chapter, the origin and representations of the motion

data used to animate the horse models was discussed. The rationale

behind the use of the two presented motion data representations will

become more apparent in Part III.

The last chapter of this part presented the manual motion data mod-

ification systems. The kinematic system as presented is simplistic, how-

ever, it plays an integral part in an automatic gait and transition gener-

ation system which will be described in Chapter 10.

The motion development tool for physics-based animal animation is

more richly featured. Using this animation system and its visualisations,

the horse-model construction process was refined and a set of spring-

damper coefficients was assembled.

The system was then used to develop motion data for a single gait,

which allowed the horse model to move in a natural manner. The time

and effort taken to manually produce this single piece of usable data

however, motivates the need for an automated approach to motion gen-

eration.
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In the next part of this thesis, the various experiments undertaken

to automatically generate and optimise motion data using evolutionary

computation techniques are presented.
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Part III

Experiments with GE
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Part III is the experimental section of this thesis. The presented ex-

periments are principally concerned with automatically generating mo-

tion data for computer constructed horse models.

In each experiment, Grammatical Evolution (GE), a grammar-based

evolutionary algorithm introduced in Chapter 3, is used to evolve motion

data for a different animation application. Details of the GE grammar,

fitness function and software system implementation are given in relation

to each experiment.

In Chapter 8, a physics-based motion data optimisation system is pre-

sented. The use of different grammars for motion data optimisation and

novel motion generation is described. Dynamic adjustments to the gram-

mar and fitness function designed to speed up the evolutionary process

are also presented.

Chapter 9 focuses on using the GE-based motion data optimisation

system to animate quadrupeds of varying breed, age, conformation and

even species using a single piece of source motion data. The first major

experiment in this chapter describes an attempt to retarget motion data

from one species to another using the GE optimisation approach and

observations of natural evolution. Issues with this approach motivate

a subsequent experiment, which describes how a model’s spring-damper

coefficients can be automatically generated as data is optimised for horses

of different ages.

In the final chapter of Part III, a system is described in which realistic

gaits and transitions for a kinematic horse model are generated. The

generated motion data is used in an animation system, which gives a

user full control over the model’s motion in real-time.
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Chapter 8

Automatic physics-based

motion data optimisation

In this chapter, a GE-based system is presented that can be used to opti-

mise motion data or generate novel motions for use with a physics-based

quadruped model. The motion optimisation system and experiments

presented in this chapter are published [134].

To restate the reason for developing such a system; physics-based

animal animations require some measured animal movement data for re-

alistic motion. This data is expensive to acquire through motion capture

and inaccurate when extracted from images or estimated by an artist.

Taking published motion data and manually tuning it to produce sus-

tained motion in a physics-based animal model is laborious, as described

in the previous chapter. Each of these factors motivates the need for an

automatic approach to motion generation.

A grammar-based GP approach such as GE is employed to this mo-

tion data optimisation task as it allows the structure of the motion data
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itself to be evolved, rather than simply optimising a set of parameters.

Additionally, GE’s separation of search and solution space allows com-

plex problem domains such as animal motion, to be easily expressed and

evolved through a grammar. For example, the summation of sinusoids

data representation, introduced in Section 6.2.1, can be easily incorpo-

rated into a grammar, as will be seen in a later section.

The GE-based optimisation system and experiments presented in this

chapter take motion data obtained from veterinary publications and op-

timise it for use with a physics-based horse model. Rather than simply

performing a parameter optimisation on the data however, a Fourier

analysis approach is used instead.

By representing the model’s motion data as a summation of sinu-

soidal functions, the optimisation process operates on a more minimal

set of parameters. Motion variation is provided through the concatena-

tion of sinusoidal functions of differing amplitude and frequency. This

representation is compact and mimics the sinusoidal nature of muscle

movement. It may also give the evolutionary process more freedom to

evolve than a parameter optimisation.

The experiments in this chapter are presented as follows. A variety of

tests using different grammar types are explored in Section 8.2, including

those that optimise motion data and those that freely generate motion.

This is followed by an exploration of evolution speed-up strategies in

Section 8.3 and a brief examination of an uneven terrain problem in

Section 8.4.

Before this however, the GE system, grammar structure and horse

simulation fitness function are discussed in the following section.
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8.1 GE system overview

All of the experiments described in this chapter use a GE system for

the evolutionary search and a physics-based horse model as the fitness

function.

The specific GE system used is a Java-based implementation called

GEVA [148]. GEVA supplies the characteristic GE genotype-phenotype

mapper and also provides a GUI, through which evolutionary parameters

can be controlled [146]. The EA search algorithm uses a variable-length

integer encoding and further details can be found in the technical speci-

fication [147].

Modular Construction

Sinusoidal 
 Grammar

Search Engine

    Horse Model
Fitness Function

GE

GEVA Operation

GEVA Setup / Initialisation

Stop at termination condition

GE

GEVA system

Motion data

Sinusoidal
 Grammar

   Horse Model
Fitness Function

Figure 8.1: The modular construction of a GE system for motion data
generation is shown in the image on the left. The implementation of such
a system with GEVA is illustrated on the right.

A modular diagram of the GEVA-based motion data generation sys-

tem is shown in Figure 8.1. The evolutionary search and GE genotype-
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phenotype mapping process are both handled by GEVA. The fitness

function however, is a separate physics-based horse model simulation

application, to which the GEVA system passes potential solutions for

assessment. The fitness function is discussed in detail in Section 8.1.2.

Each motion data optimisation process runs for a number of genera-

tions specified by the set of parameters passed to the GEVA system. The

evolutionary search parameters used for each experiment in this thesis

are presented in Table 8.1.

Table 8.1: GEVA parameters.
Parameter Value

Generations 50
Population 75

Maximum wrapping 3
Replacement strategy Generational

Elite size 7
Selection (size) Tournament (3)
Initialisation RampedFullGrow

Maximum depth 10
Grow probability 0.5

Crossover probability 0.9
Crossover point Single point (randomly chosen)

Mutation probability 0.02

As previously mentioned, the motion data optimisation system pre-

sented in this chapter evolves data in the summation of sinusoids rep-

resentation. The process by which the motion data and the general

sinusoidal representation is incorporated into the grammar is discussed

next.
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8.1.1 Grammars

The grammars used in the GE mapping process must provide for the

construction of syntactically correct motion data in the summation of

sinusoids representation. The Backus Naur Form (BNF) notation and

GE grammars in general were introduced in Section 3.5.2. In this section,

the production of specific grammars for motion generation is described.

The aim of the experiments presented in this chapter is to automat-

ically optimise a particular piece of motion data for use with a physics-

based horse model. The motion data that is to be optimised, which will

be often referred to as the seed data, is that which was extracted from the

veterinary literature, as described in Section 6.1.3. This seed data must

be incorporated into the grammar so all mapped solutions will essentially

be modified versions of this original motion.

Once the seed data is incorporated into the grammar, the other

biggest considerations in the grammar construction process is the man-

ner in which the data is modified and the degree to which the mapped

phenotypes are allowed to differ from this seed data. Depending on the

grammar, phenotypes can be constrained to remain close to the seed data

or allowed to deviate greatly.

The question of how constrained to make an optimisation can often

only be answered through observation of several test optimisations. The

manner in which the data is modified however, depends on the application

and the representation.

The seed motion data is represented as a summation of sinusoids.

The sinusoidal waveform is shown in Equation 8.1 as a function of time.
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〈amp〉 ∗ sin(〈freq〉 ∗ 2 ∗ PI ∗ time+ 〈phase〉) (8.1)

The data could therefore be optimised by manipulating the variable val-

ues of its constituent sinusoidal functions. The values of the amp and

phase parameters in each function could be optimised within some range

of values defined in the grammar. As the seed data dictates the fre-

quency parameters of these functions, the range of potential solutions is

constrained.

This grammar-based parameter optimisation may therefore not allow

for the generation of a full range of motions. To provide greater flexibil-

ity, the motion can be optimised by concatenating sinusoidal functions

to the seed data from a fuller range of frequencies. Both this concate-

nating functions approach and the parameter “numerical” optimisation

are compared experimentally in Section 8.2.1.

Grammar creation

A grammar’s structure is determined by the problem domain, as the

phenotypes created from the grammar are solutions to a specific problem.

Creating a good grammar for a particular solution type is often nontrivial

but is of critical importance.

In this section, the creation of a concatenating functions grammar

is described. The grammar must be written in a way that produces

phenotypes containing motion data for each bone in the model, in the

summation of sinusoids representation.
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The grammar needs to provide rules from which a complete set of

summations of sinusoidal functions can be built, according to the GEVA

determined derivation sequence. The exact form of the phenotype that

should be produced is presented in Appendix Section C.1.1.

The phenotypic motion data file consists of a sequence of keywords

followed by a single summation of sinusoids string for each movable bone

in the model. The grammar must be written in a manner that will

produce this complete file from every successful GE mapping operation.

An abbreviated example of an actual grammar is shown in Listing

8.1. Using the method described in Section 3.5.3, one can explore the

possible derivation paths of this grammar.

The grammar presented in Listing 8.1 contains a set of function defini-

tions, <function>, which have varying amplitude and frequency ranges.

The values of these ranges are set based on the results of a Fourier anal-

ysis of the seed data described in Chapter 6. As a result of that Fourier

analysis and subsequent data simplification, the seed data in a minimal

summation of sinusoids representation is included in the grammar at the

lines that define the <curve0> to <curve11> terminals.

It can be seen from the rest of the grammar that functions of varying

frequency and amplitude can be added to or subtracted from the seed

data expressions, producing the required phenotype.

Inclusion of the seed data, extracted from the published source de-

scribed in Section 6.1.3, provides a template motion which the GE system

attempts to optimise. It also reduces the search space associated with

a multi-jointed animal model in comparison to a system that generates

motion from nothing. The generation of gaits through grammars without
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<prog> : := <f curve0> <newline> <f curve1> <newline> . . . <f curve11>

<f curve0> : := <curve0> | <curve0> + <funcs>
. . .
<f curve11> : := <curve11> | <curve11> + <funcs>

<funcs> : := <funcs> <op> <funcs>
| <funct ion>
| <med freq amp var>

<op> : := + | −

<funct ion> : := <low freq amp var> ∗ s i n ( <l ow f r eq va r> ∗ 2 ∗ PI ∗ t )
| <low freq amp var> ∗ cos ( <l ow f r eq va r> ∗ 2 ∗ PI ∗ t )
| <med freq amp var> ∗ s i n ( <med freq var> ∗ 2 ∗ PI ∗ t )
| <med freq amp var> ∗ cos ( <med freq var> ∗ 2 ∗ PI ∗ t )
| <hi f r eq amp var> ∗ s i n ( <h i f r e q v a r> ∗ 2 ∗ PI ∗ t )
| <hi f r eq amp var> ∗ cos ( <h i f r e q v a r> ∗ 2 ∗ PI ∗ t )

<l ow f r eq va r> : := 1 | 2
<med freq var> : := 3 | 4
<h i f r e q v a r> : := 5 | 6 | 7 | 8

<low freq amp var> : := 0 | 0 .25 | 0 .5 | . . . | 20
<med freq amp var> : := 0 | 0 .1 | 0 .2 | . . . | 4
<hi f r eq amp var> : := 0 | 0 .05 | 0 .1 | . . . | 1

<curve0> : := 6.97+7.7∗ s i n (1∗2∗PI∗ t +−1.07)+2.56∗ s i n (2∗2∗PI∗ t +2.97) . . .
. . .
<curve11> : := . . .

Listing 8.1: An example of a grammar based on the concatenation of
sinusoidal functions to the seed data. Note the seed data at the bottom
of the grammar. (Omitted terms are represented by ‘...’).

seed data is explored later in this chapter. In the next section however,

the physics-based horse model application is described in terms of its use

as a fitness function.

8.1.2 Physics-based simulation fitness function

The fitness function in the GE motion optimising system uses a simula-

tion of a physics-based quadruped model in motion. The Physics-based

Quadruped Simulation (PQS) application takes an input motion data

file, simulates a quadruped model’s motion using that data for a few gait

cycles, and returns a fitness score.
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The horse model is constructed as described in Section 5.3, from the

data presented in Appendix Section B.1.3. The manually set spring-

damper coefficients (Section 7.2.4) are also provided. Other aspects of

the simulation such as gait pattern, Froude number, number of cycles to

run and fitness weights are set in advance of the optimisation process.

The PQS serves both as a fitness function and as an environment to

animate animal models. During the optimisation process, the model’s

motion is not usually animated. Besides being unnecessary, the real-

time nature of an animation and the resources involved slows down the

evolutionary process by a huge factor.

When the simulation is running, the phase difference of the limbs is

determined by the selected gait pattern and the stride frequency is based

on the Froude number argument. The input phenotype only provides

bone rotation data for each movable bone in the body, and this is what

is assessed by the fitness function.

Fitness function overview

The aim of a fitness function is to provide a scoring system that can

identify the phenotypes that may lead to an optimal solution. Equally

important is the awarding of poorly performing phenotypes and false

positives with a bad score to prevent them from reproducing.

The horse simulation’s fitness scoring system is based on dynamic

similarity predictions and energy efficiency. As discussed in Section 4.5,

dynamic similarity theory states that a mammal travelling at a particular

Froude number will share gait characteristics with other similar mammals

travelling at the same Froude number.
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A piece of motion data is optimised to move the model at a particular

Froude number. From that Froude number predictions are made regard-

ing gait pattern, stride frequency, stride length and duty factor (Table

4.2). The gait pattern determines the phase difference between the limbs

and the stride frequency prediction determines the rate at which the

limbs move during the fitness assessment.

The stride length and duty factor predictions are both used to score

an input phenotype. A phenotype that exhibits stride length and duty

factors that perfectly match the predicted values attain a score of zero,

indicating optimality; the better the motion the lower the score. The

score given to values that vary from the predictions is a function of the

magnitude of the difference.

Energy efficiency of the motion data is also a factor in the fitness

score. In nature, animal morphology and motion patterns have generally

evolved to use minimum energy to travel a desired distance at a desired

velocity [6]. The fitness function therefore rewards those phenotypes

that use minimal energy. The energy calculation is described in a later

subsection.

Each of the fitness components has an associated weight that can be

adjusted by the user. Each component’s contribution to the fitness score

is a function of its weight and a measure of the error from its predicted

value. Using this approach, a perfect score of 0 should never occur as

the energy component is a weighted sum of the model’s total energy use,

averaged per cycle and adjusted to be in proportion with the other fitness

components. As the model must expend energy to move, even the most

optimal gaits will have a positive fitness value.
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Dynamic similarity scores

Stride length is the distance between two successive placements of the

same hoof during locomotion. A limb’s duty factor is the percentage of

a gait cycle in which a limb is in contact with the ground. Both of these

gait characteristics are used to judge the optimality of motion data.

During a simulation, duty factor and stride length values are mea-

sured at every gait cycle, for each of the limbs. At the end of the run,

average stride length and duty factor values are calculated for each limb

and then separately for each pair of forelimbs and hindlimbs. The dif-

ference between these averaged pair values and the predicted values for

that Froude number is then computed.

Each of the forelimb and hindlimb duty factor and stride length dif-

ference values are then normalised according to the predicted values in

the range 0-10, as stated in Equation 8.2. Each fitness score is then

calculated as shown in Equation 8.3.

normalised value = (difference value/predicted value)× 10 (8.2)

component fitness score = (norm fore2 + norm hind2) (8.3)

where component fitness score is the actual fitness value for the com-

ponent and norm fore and norm hind are the normalised error values
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calculated by Equation 8.2 for the forelimb and hindlimb respectively.

An example of the fitness calculation process is shown in Figure 8.2.

To highlight the effect of Equation 8.3, several example fitness scores are

plotted on the scoring curve (left). From this curve it can be seen that

the farther a value is from its predicted value, the quadratically worse

the score is. Any score that is at least double the predicted score is

automatically given the worst possible score that the system allows.

   Value Predicted Deviation Norm.*10  Squared
0.25 1 0.75 7.5 56.25
0.5 1 0.5 5 25

0.75 1 0.25 2.5 6.25
1 1 0 0 0

1.25 1 -0.25 -2.5 6.25
1.5 1 -0.5 -5 25

1.75 1 -0.75 -7.5 56.25

Figure 8.2: The fitness curve used to score each fitness component is
shown alongside an example of how fitness scores are calculated. Fitness
weights are not included in this example.

The final step in computing the dynamic similarity portion of the final

fitness score involves calculating a weighted value for each component.

This weighting system allows a user to control the influence that each

aspect of a model’s movement has on the fitness score. The user can

specify a different weight for each component of the fitness function and

a component’s fitness score is multiplied by this weight, as shown in

Equations 8.4 and 8.5.

stride score = stride length fitness score× stride length weight (8.4)
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duty score = duty factor fitness score× duty factor weight (8.5)

In addition to these two dynamic similarity fitness components, the en-

ergy efficiency of the animal’s motion is the final weighted component.

Energy efficiency score

In general, gait motion patterns evolve to allow an animal to move at a

certain speed, using a minimal amount of energy [183].

The horse model fitness function exploits this observation, and for

each gait cycle in a run, the energy used is calculated. The calculation

is partly inspired by a GA approach to robot gait generation [100]. The

presented fitness function awards high scores to the most energy efficient

gait motions generated. This scoring scheme works with a high degree

of success for a robot and the authors also observed emergent behaviour

similar to that of real-life quadruped mammals.

To calculate the energy efficiency of a model, certain items of data

must be tracked. The dynamic torques required to move each limb must

be calculated at every timestep, along with the static torques required

to support the body and prevent collapse. These values can be obtained

by calculating the kinetic and potential energy of every bone in each leg.

In the horse model fitness function, this process is simplified. To

calculate the energy expenditure of a single bone at each timestep, the
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magnitude of the torque applied to that bone is multiplied by the angular

distance that the bone moves over that timestep. Each limb’s energy

expenditure is calculated as the sum of the energy used to rotate each of

its component bones. The energy expended by the entire model is the

sum of the energy use of each of its limbs.

As the torque values used in this method’s calculations do not relate

to real-life values, it is impossible to compare them to a realistic cost

of transport value. It is also nontrivial to calculate what the minimal

amount of energy required to move the physics-based model might be.

The implemented approach calculates the “minimal” energy required

to move the model as a function of the model’s mass and a numerical

constant. This constant is chosen to yield an energy value that is slightly

less than the energy use value produced by the model, when moving with

the most optimal motion data available.

This energy component of the fitness function is calculated using

Equation 8.6.

energy score = energy used× energy weight (8.6)

Once all three components of the fitness function are calculated, a pheno-

type’s actual fitness score is the sum total of each of the weighted fitness

components as shown in Equation 8.7.

fitness score = stride score + duty score + energy score (8.7)
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8.2 Motion data optimisation experiments

In this section, several different motion data grammars are compared.

Grammars that utilise seed data are explored as well as free-style

grammars that do not. In the case of these unconstrained, free-style

grammars, the goal is not to produce aesthetically realistic gaits, but

to test the capabilities of the multivariable fitness function, create novel

movement and investigate how differing levels of domain knowledge affect

gait generation.

The experiments presented in this section are divided into two cat-

egories. In Section 8.2.2 and 8.2.3, experiments involving the free-style

grammars are presented. Before this however, those experiments which

do use seed data are discussed.

8.2.1 Seed data grammar

In Section 8.1.1, grammars that contain seed data in the summation of

sinusoids representation were introduced.

The question of whether a simple parameter optimisation of the seed

data would allow for the generation of a rich variety of motions was raised.

In response to this, an optimisation approach based on the concatenation

of sinusoidal functions to the seed data was introduced.

In this section, these two approaches are experimentally compared.

Each approach is described separately, starting with the parameter “nu-

merical” optimisation approach.
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Numerical approach

As parameter optimisation approaches are known to perform well for

motion optimisation problems, a basic optimisation of the seed data’s

parameters is performed.

The first step in the optimisation process is to create an appropri-

ate grammar into which the seed data is incorporated. Each term in

the compact summation of sinusoidal functions is represented as a triple

<amplitude, frequency, phase>. For each term of a specific frequency,

both the amplitude and phase values may be optimised within a range

of 25% of itself.

In certain cases the cyclical nature of the motion may be compromised

by alteration of the amplitude and phase values, however, this usually

results in a poor fitness score and on rare occasions, simulation instability.

Any phenotype whose motion causes the simulation to become unstable

or causes the model to flip, fall or move vertically over some threshold

value, is immediately awarded the worst possible score.

The performance of the numerical approach will be discussed in Sec-

tion 8.2.1. Prior to this, the concatenating functions approach is de-

scribed.

Concatenating functions approach

To provide greater flexibility in terms of the range of motion that can

be generated from the seed data, a concatenating functions approach is

examined.
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Figure 8.3: A numerical optimisation approach is contrasted with the
concatenating functions grammar and a hybrid of the two approaches.
Best and average fitness (averaged, 30 runs) are presented on the top and
bottom respectively. (Note difference in scale.)

The grammar presented in Listing 8.1 optimises seed data by adding

(or subtracting) sine and cosine functions of differing amplitude and fre-

quency to the seed data. The frequencies of the appendable sinusoidal

functions and the seed data summations have a range of 1 to 8Hz. Fourier

analyis of the seed data shows that higher frequency functions have am-

plitudes less than the chosen threshold value of 1. These functions are

considered less influential to the overall motion and are discarded for
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compactness. The grammar also constrains appended functions of a par-

ticular frequency to have an amplitude of a specific range. This range is

also based on observations from the Fourier analysis.

A combination of the numerical and concatenating functions approach

is also experimented with. The parameters of the motion data are opti-

mised as discussed in the previous subsection, whilst sinusoidal functions

are concatenated to it. The results of all three of these approaches are

presented next.

Figure 8.4: A sequence of screenshots showing the horse model moving
with a trot. This motion was evolved using the concatenating functions
grammar. (Motion sequence progresses from top-row, left to right and
then bottom-row, left to right.)
Video 8.1 Published motion data (optimised)

Results

The best fitness plot in Figure 8.3, shows the numerical optimisation

starting off worst. Gradually it improves and achieves a similar opti-

mal solution score to the concatenating functions grammar. The overall

winner in terms of best fitness is a grammar that uses a combination
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of parameter optimisation and concatenating functions. The sinusoidal

functions are added to the seed data, whose parameters are optimised in

parallel.

As expected, the numerical approach performs well, as the seed data

has been measured from an animal with very similar morphology to the

model. In this case, the constrained nature of the numerical optimisation

is perfectly acceptable. In this thesis however, one of the goals is to take

a single piece of motion data and use it to generate multiple motions for

differing models. For this scenario, the scope for deviation provided by

the concatenating functions approach appears to be more appropriate.

In general, all three approaches excelled in this experiment. Although

the motion of the majority of the evolved solutions remained close to the

seed data, in all cases the motion data is subtly modified to provide a

smoother motion that adheres to the dynamic similarity predictions.

A sequence of screenshots showing motion optimised using the con-

catenating functions grammar is shown in Figure 8.4. The motion data

produced by each of the approaches described in this section appear

visually realistic as they are based upon data measured from a real-life

animal. In contrast to this approach, the free-style grammar experiments

that do not use seed data are presented next.

8.2.2 Free grammar

The free grammar presented in Listing 8.2 contains neither seed data or

sinusoidal function templates. This implies that the grammar includes

no information on animal motion and does not suggest any constraints

based on the animal’s joint limits and muscle distribution.
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<prog> : := <f curve> <newline> . . . <f curve>

<f curve> : := <expr>

<expr> : := <expr> <op> <expr>
| (<expr> <op> <expr>)
| <pre−op> (<expr> ∗ t )
| <var>

<op> : := + | − | / | ∗
<pre−op> : := s i n | cos

<var> : := −20 | −19.75 | −19.5 | . . . | 19 .5 | 19 .75 | 20

Listing 8.2: An illustrative example of a free-style grammar. The t vari-
able is required by the simulation application so that generated motion
data may be a function of time. The fcurve terms are omitted and rep-
resented by ‘...’ for each movable bone in the model. Similarly the full
range of var values is not shown.

As such, the motions resulting from this free grammar vary greatly

across the 30 runs completed. In some instances, the model moves utilis-

ing only its front or hind limbs. Other runs exhibit a sequence of sudden

hops to move the model. On a few occasions, motion is produced by

placing the limbs squarely under the animal’s body and using a high fre-

quency, small amplitude, back and forth motion to “vibrate” the model

along the surface.

Examples of the hopping and shuffling motions are shown in Figure

8.5. The hopping motion involves the model thrusting itself forward

from a slightly crouched position with its forelimbs. The hindlimbs are

relatively uninvolved in the locomotion process. In nature, a horse’s

hindlimbs tend to provide the majority of the thrust during locomotion,

accounting for the large muscles of the horse’s hindquarters. As infor-

mation regarding the animal’s musculature is not even implicitly incor-

porated into the grammar, it is not surprising that the produced motion

is not entirely natural.
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Hop

Shuffle

Figure 8.5: Two gait motions produced using the GE system and a free-
style grammar. The top motion has the model moving using small hops.
The lower images show a close-up of the model’s hindlimbs moving with
a shuffling motion.
Video 8.2 Free grammar hop
Video 8.3 Free grammar shuffle

The second distinct motion displayed in Figure 8.5 is the high fre-

quency shuffling motion mentioned above. This motion translates the

model quickly, however, it is physically implausible. The vast majority

of the model’s thrust is being produced by the flexion and extension of

the forelimb and hindlimb fetlock joints.

As described in Section 4.3, the musculature of the horse’s limbs

is concentrated around the upper portion of the legs. The movement

of lower joints such as the fetlock is controlled via very long tendons

running down the back of the legs. It is unlikely that these tendons

and the corresponding musculature could produce the forces necessary

to move a horse in this manner.

The fact that these very different gait cycles achieve similar fitness

scores demonstrates a flaw in the fitness function. In one scenario, dis-

parate motions can score equally according to one or all the fitness func-
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tion components. In another scenario, improvements in one aspect of the

fitness score can overshadow other components, which suggests a more

sophisticated fitness function is required.

The large variety of motions produced may imply that the ultimate

shape of a solution using a free-style grammar may be randomly de-

termined early in the evolutionary process. An interactive evolutionary

computation technique could be employed in those early generations to

guide the process towards a realistic motion.

In an attempt to avoid the more idiosyncratic motions produced by

the free-style grammar, in the following section the exploration of gram-

mars without seed data is continued, but with the inclusion of problem

domain knowledge. Sinusoidal functions with frequency and amplitude

values that match those observed through Fourier analysis of measured

motion data are included in the grammar.

8.2.3 Sinusoidal grammar

The motion patterns produced using the free-style grammar are able

to move the model at the correct velocity and in a seemingly efficient

manner, however, this is without consideration for the physical ability

and limitations of a real-life horse.

In an attempt to produce more realistic gaits without using seed data,

the free-style grammar is modified to include sinusoidal functions. The

grammar for this free-style summation of sinusoidal functions approach

is similar to the concatenating functions grammar in Listing 8.1, except

that the functions are not concatenated to any seed data.
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Essentially, the knowledge that animal gait motion data can be de-

composed into sinusoidal functions is incorporated into the grammar. In

contrast to the free grammar in Listing 8.2, information about an ani-

mal’s musculature is implicitly included through the specific frequency

and amplitude ranges of the sinusoids.

Using this sinusoidal grammar, a total of 30 motion data generation

runs were completed. While a small number of the generated gaits are

visually unrealistic, the majority are comparable to the real-life motion

of a horse. While not as realistic as those grammars which include seed

data, there is potential for improvement given a more sophisticated fitness

function and possibly increased population and generation values.

Notable results

Many of the motions generated closely resemble the motion of a real-life

horse. There are two distinctive types of motion that are recurrent with

this grammar, each of which is shown in Figure 8.6.

In A both the forelimbs and the hindimbs are moving together, as

would be seen in an asymmetrical gait. What is interesting in this case is

that the simulation is set to use a symmetrical trot limb-phase pattern.

As limb pairs are using the same data, a movement such as this should

be impossible.

It would appear that the motion data has evolved in such a man-

ner as to overcome the imposed limb phase differences and move in an

asymmetrical manner. Upon examination of the data, it appears that

the evolution process exploited the fragility of the simulation’s spring-

damper coefficients. It does this by subdividing a single gait cycle into
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A

B

Figure 8.6: Two gait motions are shown created with the sinusoidal
grammar (no seed data). In A the limbs are moving in synchrony whilst
in B the limbs are moving alternately.
Video 8.4 Sinusoidal grammar gallop
Video 8.5 Sinusoidal grammar walk

two; rather then having a single transfer and stance phase per gait cycle,

the evolved motion has two.

In a trot gait, the forelimbs (and hindlimbs) move at nearly a half

a gait cycle apart. As the model begins to move from stance, the left

forelimb is lifted from the ground and is moved forward in anticipation

of its next grounding. The evolved motion data describes a second step

in the same gait cycle, however, and as the right limb is about to move

for the first time, the left forelimb begins to move for a second time.

The full weight of the front portion of the model’s body is now on the

right limb and the torque required to move the limb cannot be generated.

As the left limb makes ground contact again, the motion controllers in

the right limb attempt to catch up on their target motion data; they

are lagging behind by a quarter of a gait cycle at this point. The right
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limb is unable to catch up with its target data and instead settles into a

pattern in which it moves in synchrony with the left forelimb.

The synchronous motion can be seen in Figure 8.6 A. This motion

can be compared to another interesting motion generated through the

sinusoidal grammar in B. In this case the model is moving in a sym-

metrical manner, however, the forelimbs move with a hugely exaggerated

motion. Although this does not appear to be an efficient way to move,

the large motions perhaps serve to balance the model somehow, which

may result in velocity gains from the hindlimbs.

These observations are subjective and speculatory and a comprehen-

sive analysis of this motion is nontrivial. The details of the evolutionary

process are presented in Figure 8.7.

Sinusoidal and free grammar comparison

Figure 8.7 shows the free-style and sinusoidal grammar scoring compa-

rably to the concatenating functions grammar in terms of fitness. This

again illustrates the pitfalls of using a multivariable fitness function and

few motion constraints. Out of the 30 free-style grammar runs, very

different “optimal” solutions score similarly.

The free and sinusoidal grammars both produced a variety of interest-

ing but very different and often unrealistic motions. It demonstrates that

if realism is the goal, seed data, or constraints built into the grammar

based on observations of animal motion, are required.
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Figure 8.7: Free-style and sinusoidal grammars compared with the con-
catenating functions grammar. Best and average fitness (averaged, 30
runs) are presented on the top and bottom respectively. (Note difference
in scale.)

8.2.4 Motion data optimisation conclusions

A comparison of the performance of each of the grammar types discussed

in Section 8.2 is shown in Table 8.2. (Note that a lower fitness score

indicates a better gait.)

The concatenating functions grammar improves upon the parameter

approach in terms of fitness score, albeit by a small margin. The over-

all winner is a combination of the two. The concatenating sinusoidal
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Table 8.2: Overall best and average fitness scores (averaged, 30 runs)
achieved by each grammar alongside their respective standard deviations
and standard errors. (Num. & Con. is the combination of Numerical
and Concatenating functions.)

Grammar Avg. Best Std. Dev. Std. Err.

Num. & Con. 95.3 5.2729 0.9627

Concatenating 100.333 8.5231 1.5561

Sinusoidal 100.4333 6.0039 1.0962

Numerical 101.3333 8.5715 1.5649

Free 106.3 19.05 3.4784

Grammar Avg. Avg. Std. Dev. Std. Err.

Numerical 132.6506 37.6833 6.88

Num. & Con. 138.8273 57.2904 10.4597

Concatenating 140.9203 43.1542 7.8788

Sinusoidal 150.2595 44.2394 8.077

Free 279.1248 81.3519 14.8527

functions approach is found to be a compact method of representing and

optimising motion data. Optimising seed data parameters whilst append-

ing new sinusoidal functions provides the flexibility that may be required

when retargeting motion data to other morphologies whilst maintaining

realism as will be explored in the following chapter.

One significant observation from these experiments is that the multi-

variable nature of the fitness function allows for significant motion vari-

ance between similarily scoring phenotypes. It may be benificial to use a

multi-objective optimisation approach in future implementations, how-

ever, careful tuning of the fitness weights can still produce high quality

results.
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Every one of the grammars tested produces motion data that far out-

performs the unoptimised seed data. A simulation of the model moving

with the unoptimised data displays an extremely shaky motion. In some

cases the model trips and bucks. After a few gait cycles, the balancing

forces can no longer control the erratic motion and the model flips. In

terms of fitness, the unoptimised seed data is awarded the worst possible

score by the system as the motion is judged invalid.

Regardless of grammar, not a single motion produced using the de-

scribed GE system causes unstable motion as that of the unoptimised

data. While the motions produced by the free-style grammars may not

be realistic, they at least allow the model to progress in a smooth man-

ner. The motions produced by the grammars which do include seed

data are judged in our opinion to be highly realistic and are a marked

improvement on the manually tuned data described in Chapter 7.

In the following section, the effect of dynamically changing the fitness

function and grammar during the evolution is investigated in terms of

evolution rate.

8.3 Evolution rate experiments

The evolution of stable motion data takes many generations and the use

of the physics-based simulation fitness function means that each fitness

appraisal can take seconds to complete. Speeding up the evolutionary

process is therefore of particular interest.

It is experimentally shown that modularly varying goals in an evolu-

tionary system can greatly speed up the evolutionary process [98]. Ex-
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ploiting this observation, two tests are presented in which the fitness

function and grammar dynamically change in an attempt to improve the

motion data evolution rate using the concatenating functions grammar.

In the first experiment, the weights of each component in the fitness

function is changed as the evolution progresses.

8.3.1 Dynamic fitness function

For the varying fitness function test, the fitness weights are changed from

generation to generation, as shown in Table 8.3. As can be seen from

this table a fourth fitness component based on distance travelled is also

included in these experiments.

Table 8.3: Fitness function weights during the fitness function variation
run. The numerical value ranges in the top line of the table indicate the
generations for which the listed weights apply.

0 - 10 11 - 20 21 - 30 31 - 40 41 - 50

Distance 1 2 1 1 1

Duty factor 1 1 2 1 1

Stride length 1 1 1 2 1

Energy 1 1 1 1 1

The goal of the dynamically changing fitness function is to speed

up the evolutionary process, prevent the process from becoming stuck at

local minima and produce a more “well rounded” solution, i.e. one which

optimises aspects of velocity, duty factor and stride length equally.

The results presented in Figure 8.8 do not show any speed-up. The

change in fitness function does seem to drive the evolution forward in

some situations. In this example, the change in fitness function causes a
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Figure 8.8: The concatenating functions grammar with alternating fitness
and grammar strategies. Best and average fitness (averaged, 30 runs) are
presented on the top and bottom respectively. (Note difference in scale.)

plateau in the best fitness score from generation 10-20. The large spike

in the corresponding average fitness plot indicates that the model has a

high distance error value at generation 10. The increase in the distance

scalar’s weight causes temporary chaos. The process recovers and quickly

proceeds to an optimal solution.
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8.3.2 Generational joint freedom

The second speed-up test involves restricting joint motion on a genera-

tional basis. The sequence in which joints are given freedom is presented

in Table 8.4. While again this approach does not speed up the evolution-

ary process, it is clear from the average fitness plots in Figure 8.8 that

the varying joint freedom grammar produces very stable gaits from the

earliest generations.

Table 8.4: Generational joint freedom. Only joints with a Xare free to
move and evolve motion data for each generation range. All other joints
remain static. The numerical value ranges in the top line of the table
indicate the generations for which the joint freedoms apply.

0 - 10 11 - 20 21 - 30 31 - 50

Scapula (fore) X X X X

Shoulder (fore) X X X X

Elbow (fore) - X X X

Carpal (fore) - - X X

Fetlock (fore) - - - X

Hip (hind) X X X X

Stifle (hind) - X X X

Tarsal (hind) - - X X

Fetlock (hind) - - - X

Proximal (neck) - X X X

Mid (neck) - - X X

Atlas (head/neck) - - - X

The large starting values apparent in most of the average fitness plots

are the result of the unviable phenotypes passed to the simulation appli-

cation, usually at the start of the evolutionary process. The motion data
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can cause the model to wildly gyrate its limbs or provide such a boister-

ous gait that the model flips over. These bad phenotypes are awarded

a very high score (corresponding to the worst fitness possible). By ini-

tially restricting the model’s degrees of freedom, production of the bad

phenotypes appears minimised.

While these experiments were attempting to speed up evolution by

varying the environment, in the final experiment of this chapter, the issue

of varying terrain is addressed.

8.4 Uneven terrain experiment

Terrain traversal is a very large and open issue in computer animation

and especially robotics (see Section 2.4.1).

Uneven terrain often features in animated movies and video games.

Poor foot placement is frequently observed and quickly breaks the illusion

of reality. Even in some of the most graphically advanced video games

currently available, a kinematically animated character’s feet are often

observed to break contact with the ground and appear to float above, or

sink through, uneven surfaces and stairs.

Uneven terrain is a particularly challenging issue for physics-based

animal models as it involves balance, foot placement, path planning and

in many cases, emulation of visual and tactile feedback. While the work

presented in this thesis does not directly address topics of balance and

terrain, we have applied the GE-based motion generation system to a

very basic terrain traversal problem.
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A simple terrain is constructed with an ODE triangular mesh primi-

tive. The physics-based model is then directed to walk over this terrain

using motion data which is optimised for walking over a flat surface.

While the model does make it over the terrain, a testament to the in-

herent stability of the motion data, much slippage of the hooves occurs.

There is also unwanted impacts of the hooves with the ground surface

during the transfer phase.

Screenshots of the model walking over the terrain using the flat surface

motion data are shown in Figure 8.9 A. In this figure, images taken at

three sequential time points are superimposed onto a single image.

A

B

Figure 8.9: The unoptimised A and optimised B terrain traversal mo-
tions are compared by displaying three images taken at the same time-
point as the horse traverses the terrain using both forms of the motion
data. It can be clearly seen that the model moving with the optimised
motion traverses the terrain more quickly.
Video 8.6 Terrain traversal unoptimised
Video 8.7 Terrain traversal optimised
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The GE-based motion optimisation approach described in the pre-

vious sections is then applied to the terrain traversal problem. In this

approach, the grammar is first altered to produce a phenotype with six

sets of motion data cycles, to be used in sequence as the model moves

over the terrain. This modified grammar is presented in Listing 8.3. The

difference between this grammar and the original one presented in List-

ing 8.1 is in the top three lines which dictate that six separate cycles of

motion data are output separated by the delimiter ‘T’. To provide the

model with a stable motion to start evolving from, the seed data included

in this grammar is previously optimised for the model on a flat surface.

The horse simulation fitness function is then modified to accept this

multiple motion pattern data format. The fitness function itself is weighted

to reward distance travelled in a certain number of cycles. The distance

component, mentioned in the previous section, is included in the fitness

function for the terrain optimisation experiment as components such as

duty factor are arguably less important in this situation. On flat surfaces,

the distance travelled is very closely related to stride length, however, on

uneven terrain the stride lengths achieved may vary from cycle to cycle.

The value of the distance component is multiplied by its fitness weight

as shown in Equation 8.8. The total fitness function score is then calcu-

lated using Equation 8.9.

distance score = distance travelled× distance weight (8.8)

239



<prog> : := <t curve s> <newline> <t> <newline> <t curve s> <newline> <t> . . .

<t> : := T

<t curve s> : := <f curve0> <newline> <f curve1> <newline> . . . <f curve11>

<f curve0> : := <curve0> | <curve0> + <funcs>
. . .
<f curve11> : := <curve11> | <curve11> + <funcs>

<funcs> : := <funcs> <op> <funcs>
| <funct ion>
| <med freq amp var>

<op> : := + | −

<funct ion> : := <low freq amp var> ∗ s i n ( <l ow f r eq va r> ∗ 2 ∗ PI ∗ t )
| <low freq amp var> ∗ cos ( <l ow f r eq va r> ∗ 2 ∗ PI ∗ t )
| <med freq amp var> ∗ s i n ( <med freq var> ∗ 2 ∗ PI ∗ t )
| <med freq amp var> ∗ cos ( <med freq var> ∗ 2 ∗ PI ∗ t )
| <hi f r eq amp var> ∗ s i n ( <h i f r e q v a r> ∗ 2 ∗ PI ∗ t )
| <hi f r eq amp var> ∗ cos ( <h i f r e q v a r> ∗ 2 ∗ PI ∗ t )

<l ow f r eq va r> : := 1 | 2
<med freq var> : := 3 | 4
<h i f r e q v a r> : := 5 | 6 | 7 | 8

<low freq amp var> : := 0 | 0 .125 | 0 .25 | . . . | 10
<med freq amp var> : := 0 | 0 .05 | 0 .1 | . . . | 2
<hi f r eq amp var> : := 0 | 0 .025 | 0 .05 | . . . | 0 .5

<curve0> : := 3.63+9.04∗ s i n (1∗2∗PI∗ t +−1.04)+2.43∗ s i n (2∗2∗PI∗ t +3.42) . . .
. . .
<curve11> : := . . .

Listing 8.3: An example of a grammar based on the concatenation of
sinusoidal functions to the seed data modified for use in a terrain traversal
problem. Six cycles of motion data are optimised in comparison to the
usual one. (Omitted terms are represented by ‘...’).

fitness score = stride score + duty score + energy score + distance score

(8.9)

For this experiment, the distance weight is set to be three times that of

the other components, e.g. stride weight = 1; duty weight = 1; energy
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weight = 1; distance weight = 3. To prevent the evolution from aban-

doning realistic motion and simply pursuing maximum distance by any

means possible, the range of the amplitude constants in the grammar is

limited to keep the evolved motions close to the seed data.

The GE optimisation process uses the parameters from Table 8.1.

Throughout the evolutionary process, the terrain remains the same and

only the contents of the six sequential motion data files are evolved.

8.4.1 Results

Out of the large number of optimisations attempted, the overwhelming

majority of solutions traversed the terrain in significantly shorter times

than the flat terrain motion data. Images of a model moving with terrain-

optimised motion data are shown in Figure 8.9 B. This sequence of images

was taken at the same time points as the model in A, and it demonstrates

that the optimised data moves the model at a significantly faster speed

over the terrain.

An analysis of the generated motions show that the increase in speed

is due to the higher stepping action adopted by the model. By taking

higher steps, the unwanted collisions with the terrain during the limbs’

transfer phase are mostly avoided and instances of hoof slippage are

significantly reduced. An illustration of this high stepping behaviour

is shown in Figure 8.10.

In these frames the model can be clearly seen taking a high, extended

step up onto the first part of the terrain. By taking this big step, the

model avoids accidentally colliding its hooves with the elevated surface

and puts the model in a stable position to move over the rest of the
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4 5 6

Figure 8.10: Six sequential, numbered screenshots of the physics-based
horse model moving over uneven terrain are shown. The motion data
optimised for this terrain produces an exaggerated stepping motion as
the model moves up on the terrain segment.

terrain in a similar manner.

This is a very positive result, however, the use of a single terrain

for both the optimisation and testing are indicative of the limits of this

approach. A more exciting contribution would be a GE system that

could evolve a controller which dynamically calculates the motion data

required to traverse any given terrain.

The evolution of dynamic controllers is not directly explored in this

thesis, however, a similar concept is discussed in Chapter 10 when dy-

namic gait adjusters are described.
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8.5 Chapter summary

In this chapter, a GE-based motion data optimisation system for a physics-

based horse model is presented.

The optimisation system is a combination of a Java implementation

of GE called GEVA, a quadruped-simulation fitness function and a gram-

mar which includes motion data in the summation of sinusoids represen-

tation.

The quadruped-simulation fitness function is described in detail re-

ferring to its use of dynamic similarity predictions and energy efficiency

calculations. Experiments are presented that compare motion data gen-

eration approaches that utilise seed motion data to those that don’t.

A second group of experiments examine the affects that the dynamic

alteration of the grammar and fitness function have on the rate of evo-

lution. The final section of the chapter describes the application of the

optimisation system to an uneven terrain traversal problem.

In the following chapter, the motion data optimisation and generation

approach is applied to models of different size and the issue of automatic

spring-damper coefficient generation is explored.
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Chapter 9

Variable morphologies

The subject of motion data reuse for models of different size and propor-

tion is addressed in this chapter.

Given the expense involved in acquiring motion data that pertains

to a single real-life animal, when animations of multiple animals are

required, that expense is multiplied. It would therefore be valuable to

have a system that can reuse a single piece of motion data as the seed for

generating motion for other animals of different shapes, size and species.

The first section of this chapter describes an attempt to reuse data

measured from an animal of one species to animate a model of another.

This motion data retargeting system exploits natural evolution observa-

tions to iteratively retarget motion data through a series of hybrid animal

models and is presented in Section 9.1.

During this experiment, a significant obstacle to the retargeting ap-

proach became apparent; models with varying mass and proportions re-

quire different spring-damper (s-d) coefficients. This implies that both

the motion data and s-d coefficients must be optimised for every model.
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To explore this issue, a method is presented in which data pertaining

to a particular horse’s gait motion can be used to animate horses of dif-

ferent age, sex, breed and conformation. To demonstrate this method, an

application is described in Section 9.2 that automatically generates horse

models of a user-specified age, for which motion data can be generated.

Using this application as a testbed for automatic s-d coefficient op-

timisation, two GE approaches to this problem are compared. In one

approach, the model’s s-d coefficients are optimised prior to the motion

data optimisation. This method is contrasted with a parallel optimisa-

tion of both the s-d coefficients and the motion data.

In advance of this, in the following section the motion data retargeting

attempt is described followed by a discussion of the issues raised by this

experiment.

9.1 Interspecies motion retargeting

The horse is a well-studied animal and as such, there is motion data

available in the biology and veterinary literature. With the vast major-

ity of animals however, there is no motion data available. In response

to this, the possibility of using data measured from one species to ani-

mate another is investigated. This process is referred to as motion data

retargeting and the system and experiments presented in this section are

published [132].

The concept of motion retargeting is not uncommon in the animation

field, however, it is usually employed in relation to human motion capture

data [71, 159]. The process of adapting and adjusting motion capture
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data for different characters is fraught with difficulty and thus animators

refer to it as the “motion retargeting problem”. To overcome this prob-

lem, several systems are proposed including those that use intermediate

skeletons to aid the retargeting process [128].

While these retargeting systems often utilise optimisation processes

to some degree, they are frequently based around animation constraints.

Our motion data retargeting system in contrast does not operate through

constraints, but rather allows a motion to gradually evolve towards the

new model.

The evolutionary approach is inspired by the fact that an animal’s

skeletal dimensions and musculature have gradually adapted to its envi-

ronment over millions of years through natural evolution [62]. Because of

this, the difference in body proportions between two animals of differing

species can be large, however, cursorial quadrupeds have highly similar

skeletal structures and gait patterns, which potentially allows for motion

data retargeting.

Two specific retargeting systems are presented in this section. Both

systems take motion data measured from a horse and optimise it for use

with a dog model. In one system, a model’s motion and the model’s

bone proportions themselves evolve towards the target animal in one

continuous optimisation process. In the other system described next,

a number of separate optimisation processes are carried out on a pre-

determined number of hybrid models.
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9.1.1 Discrete model system

The discrete motion data retargeting system is shown in Figure 9.1.

HORSE DOG

GE GE GE GE

Sample
Gait

Optimal
Gait

Optimal
Gait

Optimal
Gait

Optimal
Gait

Seed
Gait

Seed
Gait

Seed
Gait

Source Model Hybrid Model Hybrid Model Target Model

Figure 9.1: Discrete motion data retargeting with Grammatical Evo-
lution (GE). Optimisations are performed on a series of intermediate
horse-dog hybrid models.

This figure shows the standard physics-based horse model on the left

and a dog model on the right constructed from published skeletal data

[12]. For each motion data retargeting attempt, the system constructs

a user-specified number of hybrid models, each of which is a linear in-

terpolation between the horse and dog model. As the gait retargeting

process proceeds, the bone proportions of subsequent hybrid models tend

towards those of the target animal.

The retargeting system utilises the motion data generation method

and application described in Chapter 8. The motion data is represented

in the summation of sinusoids format and optimised using the combined

numerical and concatenating functions approach.
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The fitness function is again based in part on dynamic similarity the-

ory which is highly suitable as its predictions should hold true for all

cursorial quadrupeds travelling at the same Froude number. The other

component of the fitness function is energy efficiency which is also the-

oretically an appropriate choice. Each animal’s musculoskeletal system

has evolved to minimise energy expenditure and the consequent differ-

ences in musculature and bone proportions between species result in dif-

ferent motion patterns. The theory is that as the incremental optimisa-

tion process progresses, each newly generated motion pattern will further

resemble the target model’s real-life motion, due in part to the energy

efficiency-based scoring system.

The retargeting process starts by generating an optimal motion data

cycle for a pure horse model from the measured seed data. This optimised

motion data then becomes the seed data for a hybrid model, for which

the GE system generates a new optimal motion data cycle. This process

is repeated until a pure dog model is reached and its motion optimised.

This is a simplified overview but further details of the retargeting process

are given in following subsection.

Process

The discrete motion data retargeting process utilises a combination of

applications, data files, control scripts and grammars. Both the GEVA

system and Physics-based Quadruped Simulation (PQS) application pre-

sented in Chapter 8 are utilised in the retargeting process, as is an addi-

tional application called the Grammar Writer (GW).
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The GW is a simple application that takes both a grammar format

file and a set of numerical range parameters as input. Using the grammar

format and value range data, the GW outputs a BNF form grammar that

can be directly used with a GE system. The GW is used throughout the

retargeting process to take the optimised motion data from one hybrid

model, and incorporate it into a new grammar as seed data for the next

hybrid model in the sequence.

As the retargeting process involves optimising motion data for models

of differing mass and proportions, varying s-d coefficients are required.

The retargeting system uses an automatically generated set of s-d coef-

ficient values which each are a function of an input parameter. For each

hybrid model, a large range of input parameters are tested and the best

performing value is selected and used for the motion data optimisation.

To assess the suitability of a set of s-d coefficients, an additional

component called motion curve deviation is added to the fitness function.

This component scores how closely a set of s-d coefficients can keep the

movement of the bones synchronised with the target motion data.

During each cycle of a run, the difference between the actual angle

and target angle of each bone in the model is recorded. For each limb an

average disparity value for the entire run is calculated and the values are

summed. This sum total is then normalised to a range appropriate to the

other fitness components and is finally multiplied by its fitness weight.

This measurement of how appropriate the generated joint torques are,

coupled with the gait quality fitness score, provides a usable indication

of how suitable a set of s-d coefficients are for a particular model. The

subject of s-d coefficient optimisation will be revisited in Section 9.2.
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Prior to the start of the retargeting process, the user specifies the

number of the hybrid models to use, the Froude number and gait pattern.

During the optimisation process, the limb phase differences of the gait

pattern are imposed on all hybrid and target model simulations via the

motion controllers. The degree to which the generated motion data may

deviate from the seed data is also set by the user through arguments

passed to the GW. Certain data files must also be supplied including the

source and target model files and the initial seed motion data.

The main sequence of operations that occur during the gait retarget-

ing process are presented in the following list. Data movement and other

low-level operations are omitted for conciseness.

1. Retargeting process commences

2. Simulation application calculates and outputs hybrid model files

3. GW takes the current best seed motion data and outputs a gram-

mar file to GEVA

4. Simulation application evaluates a range of s-d coefficient input

parameters, storing the best one

5. GEVA optimises motion data for the current model using the sup-

plied grammar file and simulation application as fitness function

6. Steps 3 to 5 are repeated for each hybrid model until either a solu-

tion is found or a certain number of generations is reached

Discussion

The retargeting system operates excellently for the hybrid models that

are close in size and proportion to the original horse model. Issues arise
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with the s-d coefficients however, as the process progresses further to-

wards the target model.

The best chosen generic set of s-d coefficients score worse with each

subsequent hybrid model. It appears that as the mass of the model de-

creases, the sensitivity to poorly set s-d coefficients increases. Although

the retargeting process does complete in most cases, the retargeted mo-

tion is ultimately evolved to compensate for poorly set s-d coefficients.

The resultant motion is recognisable as a natural gait but contains many

erratic gestures.

It appears however, that the discrete hybrid model system would per-

form better if the s-d coefficients could be set correctly for each model. A

numerical optimisation approach to s-d coefficient generation was tested

but it too experienced problems.

If s-d coefficients are to be optimised for a model, motion data that

allows the model to move in a stable manner must be available. Un-

fortunately, that stable motion data cannot be generated without an

appropriate set of s-d coefficients.

In response to this problem, a continuous retargeting approach is

presented in the following section.

9.1.2 Continuous model system

Rather than evolving motion for a set of distinct hybrid models, the

continuous system evolves the model itself towards the target.

This approach is illustrated in Figure 9.2. The retargeting system

attempts to optimise the motion data, s-d coefficients and the model

itself towards the target at the same time. The grammar is written in
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Figure 9.2: Continuous motion data retargeting with Grammatical Evo-
lution (GE). Optimisations are continuously performed on the seed data,
model’s proportions and s-d coefficients until the target is reached.

such a manner that the phenotypes produced from the GEVA mapping

process contain model construction-, s-d coefficient- and motion-data.

This continuous approach necessitates the addition of yet another

component to the fitness function. As the model itself is being evolved,

a score is given for how much the current model differs from the target,

rewarding those models which tend to be smaller and more doglike.

Process

Prior to the commencement of the continuous retargeting process, the

Froude number and gait pattern are set by the user and the system is

supplied with seed motion data, a source and target model and the set

of s-d coefficients that were manually tuned for the horse model (Section

7.2.4).

252



Each of these source data files are input to the GW application and

a grammar is output according to the user-specified parameters which

control the optimisation value ranges within the grammar. The numerical

parameters of each phenotype are chosen from these ranges.

During the continuous retargeting process the following, simplified se-

quence of steps are taken.

1. GW takes the current best seed motion data, source and target

model files, and manually tuned s-d coefficients and then outputs

a grammar file to GEVA

2. GEVA optimises motion data, s-d coefficients and the model to-

wards the target using the supplied grammar file and simulation

application as fitness function

3. Step 2 is repeated until either a solution is found or a certain num-

ber of generations is reached

Discussion

Attempting to optimise three separate and interdependent components

at the same time is a significant challenge as the sheer number of variables

involved produces a huge search space.

During experimentation, the system never completed a full retarget-

ing, however, at the end of a set number of generations, the resultant

model/motion/s-d coefficient combination appears very stable in a large

number of cases. In the majority of the 30 runs carried out, the model

evolves towards the target model proportions but then stops at roughly

the same point.
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One could speculate that this is a tipping point, after which the tol-

erance of incorrectly set s-d coefficients significantly lowers. Regardless

of cause, the biggest problem appears to be that there are too many con-

flicting objectives in this continuous approach. It is possible that with

a more sophisticated fitness function, the evolution could be guided to-

wards the target. It is also possible that attempting to create motion in a

physics-based model using this retargeting approach is either unfeasible

or computationally intractable.

9.1.3 Retargeting summary

The motion data retargeting experiments presented in this section were

undertaken with an appreciation of how difficult a task the retargeting

would be.

While stable retargeting was not achieved, the attempts resulted in

the development of several interesting evolutionary systems. Each exper-

iment also reminds us how important an appropriately chosen set of s-d

coefficient values are to a physics-based animal model of this nature.

In the final continuous experiment, the optimisation of s-d coefficients

appeared to work well, as long as the model did not stray too far from the

state in which it had appropriate motion data to move with. Motivated

by this finding, the issue of automatically generating s-d coefficients for

animal models that differ in proportions within a particular species is

explored in the following section.
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9.2 Multiple models

In this section, the animation of horse models of varying shapes and sizes

is examined.

Animations of large herds of animals are often featured in movies,

television and video games. If a scene is to be considered realistic by a

viewer, the diversity of shape and size of the animated herd’s individuals

must be as found in nature. As such, many different-shaped animal

models must be constructed and animated.

The variation in a herd of animals comes from several factors. As-

suming each animal is of the same species, for animals like the horse,

it is possible that a herd contains multiple breeds. Within those breeds

the animals may vary in age and sex. In addition to this, individual

animals exhibit different conformations. The variation in the shape and

size of each animal will affect its motion. If an animation of such a herd

of animals is to be realistic, motion data that relates to each individual

animal is required.

In this section, a system is described for constructing and animating

physics-based horse models of different shapes and sizes using construc-

tion and motion data pertaining to a single animal. To produce the vari-

ety of models required for a herd scene, an application is presented that

can automatically generate and construct horse models of a user-specified

age. The body proportions of the generated models are determined by

user supplied animal allometry data. The model generation system and

experiments presented in this section are published [135].
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When a model is constructed, motion data is optimised for that model

using the same GE-based motion data optimisation technique described

in Chapter 8 and used for the motion retargeting experiments. The large

range of body shapes and sizes that can be generated is problematic

however, as each novel model requires a bespoke set of s-d coefficients.

This issue was apparent in the previous section and it was concluded that

an automatic approach to s-d coefficient optimisation is required.

In Section 9.2.3, a method by which s-d coefficients can be optimised

both prior to and during the motion data optimisation process is ex-

plored. In Section 9.2.2 the age specific model construction and motion

generation system is described. In advance of this, the allometric data

used by this system is presented.

9.2.1 Allometric measurements

In Section 4.3.5, the topic of allometry was introduced. For the experi-

ments presented in this section, observations of skeletal allometry for a

horse are utilised in the animation system.

The growth-rate of the body segments delineated in Figure 4.7 are

plotted in Figure 9.3 for both colts (male) and fillies (female). The data

on which this figure is based is taken from [188] which presents a study

of the skeletal growth-rates of Thoroughbred horses.

The original data is measured from over 100 Thoroughbred horses in

two week increments from birth to 84 weeks [188]. For each of the body

measurements mentioned above, average growth data for both colts and

fillies is published. The power law equations shown in Table 9.1 are based

on this data and are used to create the plots shown in Figure 9.3.
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Skeletal Growth Rates

Figure 9.3: Skeletal growth-rates for Thoroughbred horses taken from
[188], approximated by the power law equations in Table 9.1.

The power equations presented in Table 9.1 are used to create dis-

tinct physics-based horse models in the Variable Morphologies System

described next.

9.2.2 Variable Morphologies System overview

The Variable Morphologies System (VMS) automatically generates and

constructs a physics-based horse model of a user-specified age. The breed

of horse generated is determined by the input model construction file and

the supplied growth-rate data which defines how different aspects of an

animal’s body grow in relation to each other as the animal ages.

The model values presented in Figure 9.4 (right) are calculated using

the filly growth-rate equations in Table 9.1 which are also plotted on the

left of the figure. Each model’s characteristic values are a fraction of the

base horse model data which is the standard data used for each of the

horse models in this thesis, provided in Appendix Section B.1.3.
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Table 9.1: Skeletal growth-rate power law equations.

Body segment Equation (Colt) Equation (Fillie)

Body weight y = 0.1454 * x0.5132 y = 0.1555 * x0.4992

Hip-height y = 0.6882 * x0.1012 y = 0.6907 * x0.1009

Wither height y = 0.6767 * x0.1044 y = 0.6785 * x0.104

Body length y = 0.5121 * x0.1806 y = 0.5252 * x0.1758

Shoulder to pastern y = 0.7553 * x0.0736 y = 0.7452 * x0.0793

Knee to pastern y = 0.8717 * x0.0394 y = 0.8667 * x0.0407

Hock to pastern y = 0.9194 * x0.0249 y = 0.9288 * x0.0224

Depth of girth y = 0.5269 * x0.1771 y = 0.5453 * x0.1725

Width of chest y = 0.5962 * x0.1395 y = 0.6197 * x0.1336

The VMS is an extension of the quadruped simulation application

(PQS) described in Chapter 8. The modified system takes the base model

data and calculates a new model’s construction data from the growth-

rate equations, according to a user-specified age. This new model is then

constructed in the standard manner described in Section 5.3.1.

It should be noted that there is an age and breed mismatch between

the growth-rate equation horses and the horses from which the base

model data comes from. This is because published studies regarding

growth-rates and anatomical data for specific breeds are often unavail-

able, however, the incongruity between these two sets of data is accept-

able for proof of concept.

Depending on data availability, the VMS system can be easily mod-

ified to generate models varying in breed, conformation, sex and defor-

mity. Regardless of how a model is generated however, motion data must

be optimised for use with that model. The following section describes
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Figure 9.4: Growth-rate equations (left) and example model values
(right). The example models shown are fillies in this case.

the motion data generation process and further discusses the problem of

s-d coefficient tuning.

Motion data optimisation process

The variable morphology motion generation approach uses the same

GEVA-based system described in Chapter 8 except that the VMS acts

as the fitness function.

The optimisation process uses the combined numerical and concate-

nating sinusoidal functions grammar. This approach ensures that the

optimisation remains constrained to the realism of the seed data, whilst

providing scope to deviate, thus accomodating different morphologies.

Once a candidate phenotype is generated from this grammar it is

passed to the VMS for evaluation. The model, for which the gait is

being optimised, is constructed and moved for a few gait cycles using the

generated phenotypic motion data. The movement is then scored by a

fitness function and that score is passed back to the GEVA system.
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The components of the fitness function score are again based on en-

ergy efficiency, stride length and duty factor. As previously mentioned,

s-d coefficients must be evolved for each model, as will be discussed in

the following section. As with all optimisations of s-d coefficients, the

fitness function also includes the motion curve deviation component, as

introduced in Section 9.1.1.

9.2.3 Spring-damper coefficient experiments

As stated previously, the tuning of the s-d coefficients is of vital impor-

tance to the motion generation process. For a system that dynamically

constructs and animates models of different size and proportions, an au-

tomatic approach is especially important.

Ideally, exact values for the s-d coefficients could be calculated based

upon model mass, model hip-height, bone length, bone mass and position

in the hierarchy. Attempts were made to use GE to evolve equations,

using the aforementioned model traits, which would allow one to easily

calculate the s-d coefficients for any model. All efforts to produce an

equation for the entire model, and each joint respectively, were wholly

unsuccessful, most probably due to the very large number of variables

involved.

As this ideal approach remains elusive and possibly unachievable, a

numerical optimisation approach is employed instead. From the failed

experiment mentioned above, some valuable knowledge was gained and

is used to constrain the numerical optimisation.

The general range of s-d values which will allow a model to move are

linked to the mass of that model, however, the model’s skeletal structure
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is also influential. Bones higher up in a limb have a much greater mass

to move and therefore require greater torques. The bones lower in a limb

have less mass to move, however, some bones are subject to large angular

velocities as the model moves and may have to generate compensatory

torques in order to achieve their own target motion.

In addition to this, the previously stated s-d coefficient setting prob-

lems still stand. Setting the spring constant too low will not allow the

model to apply the necessary torques to move according to the motion

data. Setting the spring constant too high can cause the simulation to

explode and crash. This risk of an invalid simulation run due to a single

extreme value prevents us from running a numerical optimisation on an

unconstrained range of values.

Optimisation system

The s-d coefficient optimisation system is a two-step process. The system

firstly runs a rapid series of tests to ascertain the range of s-d coefficient

values that will provide the most stable gait cycle possible given motion

data that is not optimised for that particular model. The numerical op-

timisation is then performed within that range. The entire optimisation

process is illustrated in Figure 9.5 and is explained in detail below.

Prior to commencement, an s-d base range, sufficient for base model

motion, is experimentally established. As the base model pertains to

fully-grown horses, all generated models will be smaller in mass and

dimensions. It is therefore assumed that each model’s ideal s-d coefficient

range will fall beneath this maximum value.
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Figure 9.5: Flow chart of the spring-damper (s-d) coefficient and gait
optimisation process. Note: the two distinct approaches investigated are
distinguished by the fork in the flow chart.

The process begins with a rapid test to determine what s-d value

range is appropriate for the generated model. The motion data used to

test each value was previously optimised for the base model. This motion

data should not produce perfectly stable motion as the generated models

differ in proportion, however, the gait cycle should be sufficiently stable

to provide an indication of performance. At this point, the VMS fitness

function is weighted to score the motion data based only on the motion

curve deviation component.

The generated model is then automatically tested with a set resolution

of increments of the s-d base range values, with each bone in the model

given the same s-d coefficient parameters. For a more stable gait, each

joint will require its own specific coefficients but at this stage, the uniform

values tested simply indicate an acceptable range. The values which give

the most stable gait throughout the testing dictate the range of values

used for the s-d coefficient numerical optimisation, and are passed into

the Grammar Writer application.
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Each grammar is automatically written to allow for a numerical opti-

misation within a set range. In these experiments, the range allowed by

the grammar spans from 0.5 up to 1.25 times the passed-in values. This

range is divided into 50 even increments and this set of values is written

into the grammar. Once the numerical optimisation range is established,

there are two separate approaches to the optimisation, as detailed in the

following subsections.

In the first approach, indicated by the upper path after the fork in

Figure 9.5, a numerical optimisation is performed to establish the spe-

cific s-d coefficients for the entire model. The seed motion data is then

optimised for use with the model. The second experiment shown on the

lower path, optimises the s-d coefficients and motion data in parallel.

Each of the experiments presented in this section are performed using

GEVA with the parameters presented in Table 8.1. For each approach,

results are presented for two generated models, corresponding to models

I and II as shown in Figure 9.4.

Sequential spring-damper and motion data optimisation

In this first experiment, the s-d coefficients are optimised separately to

the motion data. The results of 30 runs are presented in Figure 9.6. As

with all the experiments presented in this thesis, a lower fitness score

indicates a better result. The plots show large variance in fitness across

all of the runs with the variance most obvious for model II.

It can also be seen that in the earliest generations, both the best and

average fitness scores are higher for model II (and therefore worse) than

for model I. This may be because model II is a younger horse. Being
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Figure 9.6: Best fitness and average fitness for s-d coefficient optimisation
(models I and II, 30 runs).

younger, it is therefore more different in body proportion to the base

model than the older model I. The motion data cycle used for these s-d

coefficient optimisations is optimised for the base model and it has been

observed that the more a model differs from this base, the less stable

the gait. Instability yields bad fitness scores, and this may explain these

results.

The average of the best and average fitness scores is shown in Figure

9.7. It is surprising that the best fitness score of model II is significantly

better than model I despite it starting off worse. Model II may be scoring

highly because the s-d coefficient optimisation is compensating for the

unstable gait through its evolution of the s-d values. Although interest-

264



0 10 20 30 40 50

30

35

40

45

50

55

Generations

Fi
tn

es
s

Best Fitness: Spring−Damper (S−D) (Model I & II) (Avg 30 runs)

 

 
S−D (I)
S−D (II)

0 10 20 30 40 50

30

35

40

45

50

55

60

65

70

75

80

Generations

Fi
tn

es
s

Average Fitness: Spring−Damper (S−D) (Model I & II) (Avg 30 runs)

 

 
S−D (I)
S−D (II)

Fitness score:  all S-D run values averaged (I)
Fitness score:  all S-D run values averaged (II)

Fitness score:  all S-D run values averaged (I)
Fitness score:  all S-D run values averaged (II)

Best Fitness avg (I):  34.0714
Stdrd. Deviation (I):  2.7342

Best Fitness avg (II):  29.6429
Stdrd. Deviation (II):  2.9087

Avg Fitness avg  (I):  36.1210
Stdrd. Deviation (I):  2.8150

Avg Fitness avg  (II):  37.9086
Stdrd. Deviation (II):  5.7028

Figure 9.7: Best fitness and average fitness for s-d coefficient optimisa-
tion (models I and II, averaged 30 runs). Standard deviation values are
included for the averaged best and average fitness scores. The generated
s-d values for all 30 runs were averaged and scored for comparison.

ing, this is undesirable as we wish to evolve the best values for future

motion data optimisations, rather than values that provide stable motion

from unsuitable motion data.

It can be seen from the average fitness plots in Figure 9.7 that model

II’s average fitness score was worst overall. Model II’s average fitness

standard deviation is also significantly higher than model I’s. This high

disparity in average score between runs again indicates the high level of

instability caused by the base model’s inappropriate motion data.

During this experiment, is was also hypothesised that the average of

all the generated s-d coefficients would yield a high-scoring set of values.

The average of all the s-d value sets, from each of the 30 runs, is therefore

calculated and experimentally tested in the simulation application; these

scores are indicated in Figure 9.7. The hypothesis appears to be incorrect

as the scores achieved are significantly worse than the best fitness scores

of the non-averaged individual runs. This perhaps demonstrates that

the performance of the values in each generated set are dependent on

265



one another and that there are a huge number of potential solutions for

each model’s s-d coefficient optimisation.

Once a suitable set of s-d coefficients are found for a generated model,

the motion data optimisation process can take place. This is a completely

separate optimisation process again using GEVA with the parameters

presented in Table 8.1. In total the sequential optimisation process runs

over 100 generations; 50 generations for the s-d coefficient optimisation

and then another 50 generations for the motion data optimisation.

The results of these runs will be discussed after the parallel s-d/motion

data optimisation approach is briefly described.

Parallel spring-damper coefficient and motion data optimisation

In this second experiment, the s-d coefficient values are optimised in

parallel with the motion data.

In this system, once the best performing s-d coefficient range is estab-

lished, the Grammar Writer creates the grammar in the manner described

previously in this section. This time however, the grammar also includes

the motion data optimisation terms, similar to the continuous retargeting

grammar described in Section 9.1.2.

The value ranges used in all aspects of this experiment are the same

as the sequential approach, but instead of having two sequential runs of

50 generations, the optimisation is initially performed in a single run of

50 generations. The results are presented in Figure 9.8.
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9.2.4 Comparison

A comparison between the sequential and parallel gait optimisation ap-

proaches is shown in Figure 9.8.
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Figure 9.8: Best fitness and average fitness for sequential gait and parallel
spring-damper (s-d) coefficient and gait optimisation (models I and II,
averaged 30 runs).

It can be seen in Figure 9.8 that the sequential optimisation approach

to optimisation has won in terms of best fitness score. The average fitness

scores show model II scoring worse than model I in both experiments,

regardless of optimisation approach. It should be noted that the sequen-

tial approach had double the computation time of the parallel approach,

however, further experiments in which the parallel approach was given

equivalent generations did not show a significant improvement.

Overall the sequential approach performs well, however, the fact that

the s-d coefficient optimisation is performed with motion data which

may not be stable for a diverse range of models is a potential problem.

This problem might have been resolved by using the parallel optimisation

approach, however, this has performed poorly, perhaps due to the large

number of variables in the optimisation.
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In future, the parallel approach could be improved by imposing cer-

tain constraints during the optimisation in an attempt to reduce the

number of free variables. The best solution may be to try a combi-

nation of both sequential and parallel approaches, perhaps using both

approaches interchangeably during the optimisation process.

In conclusion, we have successfully developed an application that can

automatically produce distinct horse models according to a user’s specifi-

cations. Using the sequential s-d coefficient and motion data optimisation

technique, it is then possible to optimise a single piece of motion data

for use with a variety of different models. The animation results of these

experiments are discussed in the following section.

9.2.5 Animation results

1.24524 m 1.16 m
0.98 m

Base model Model I Model II

Figure 9.9: The two horse models (I and II) constructed by the Variable
Morphologies System (VMS) are shown in the centre and on the right of
the image. The horse on the left is the base horse model used throughout
this thesis and whose data the other models are calculated from. The
displayed hip-heights are measured from the models and closely match
those predicted by the allometry equations.

As stated in the previous section, the results of the s-d coefficient

optimisations experiments would ideally be improved, however, the best
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performing sets of s-d coefficients are perfectly usable for animating ani-

mals of varying shapes and sizes.

The VMS accurately calculates and constructs animal models of the

correct size and proportion for a given age. An example of this is shown in

Figure 9.9. The figure shows images of the base model, used throughout

the physics-based experiments in this thesis, and model’s I and II, used

for the experiments presented in this section.

When the proportions of each of these models are measured, the re-

sults closely match the proportions that are predicted for a horse of that

age using the allometric power law equations presented in Table 9.1.

Using s-d coefficients and motion data generated using the sequential

approach, the generated motions appear appropriate to each model’s

proportions. Each motion is also distinctive. Sequential frames from a

scene in which models I and II are trotting side-by-side are shown in

Figure 9.10.

By way of comparison, an identical scene was tested with two models

of different sizes, but with the same proportions. As both models were

scale replicas of one another, the same optimised motion data was used

for each. The homogeneity of both the models and the gait motion was

immediately obvious as the animation was visually appraised.

In conclusion, based on a subjective visual evaluation of the resultant

animations, it would appear that incorporating knowledge of animal al-

lometry into a herd scene can improve the realism of the animation.
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Figure 9.10: Four screenshots from a scene involving two horses of dif-
ferent ages. The brown horse to the forefront of the scene is Model I and
the white horse is Model II.
Video 9.1 Multiple models scene

9.3 Chapter summary

In this chapter, the reuse of motion data measured from a single animal,

for the animation of other animals of differing age and species is explored.

The first half of the chapter presents an interspecies motion data

retargeting system. Discrete and continuous evolution systems are de-

scribed in detail, including additions to the quadruped simulation fitness

function. The retargeting process is found to be unsuccessful and moti-

vates the need for an automatic s-d coefficient optimisation system.
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In the second half of the chapter, the automatic optimisation of s-d co-

efficients is investigated using the Variable Morphologies System (VMS)

which generates structurally distinct models based on that model’s age.

Through the presented experiments, a sequential approach to s-d coeffi-

cient optimisation and motion data generation is found to be better than

a parallel approach.

Unlike the retargeting process, the VMS generated models and mo-

tions are stable, realistic and can be used to add an extra element of

realism and visual interest to an animation involving multiple animals.

The difficulties involved in producing physics-based animal animations

are still apparent however, as a large amount of manual development and

computational expense is involved in producing a single piece of stable

motion data for a single model.

To investigate the possibility of enforcing realism on an animation,

without the associated problems of a physics-based system, the issue of

using realistic gaits and transitions for kinematic animal animations is

explored in the final chapter of Part III.
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Chapter 10

Kinematic gait and transition

animation system

In this chapter, the issue of realistic animal animations is examined in

relation to kinematic models.

A common problem with animal animation is when the animal models

move with gait patterns that are inappropriate to their velocity. For

example, a model translating at a slow speed whilst its limbs move in a

gallop pattern is visually incorrect and physically implausible. Similarly,

a model translating at a fast rate whilst using the limb pattern of a walk

is equally incorrect. The animation system presented in this chapter, and

published [133], addresses this problem.

If an animation is to be realistic, the model should move with a gait

appropriate to its velocity and be able to transition smoothly between

gaits when necessary. As such, this chapter focuses on the production

of a range of motions for each of the natural gaits and the transitions

between those gaits.
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The experiments presented in the previous chapters of Part III have

been based upon physics-based animal models. While the animations

resulting from this type of simulation can be highly realistic, the motion

data generation and animation process is nontrivial and computation-

ally expensive. Additionally, each of the presented experiments focus on

optimising a single gait motion for a particular model.

In contrast to this, the animation system presented in this chapter

adopts a kinematic animation approach to avoid the issues of instability

and long simulation times associated with physics-based models. By

sacrificing some of the physical realism of a physics-based simulation, a

larger variety of motion can be quickly generated and used in a real-time

animation system.

One of the major contributions of this animation system is the method

by which it dynamically alters a gait’s motion data depending on the

model’s Froude number. These dynamic gait adjusters are described in

Section 10.2 along with a description of how they are evolved using GE

and an extension to the Curve Modifier Application (CMA) introduced

in Chapter 7. Following this, the animation system and transition calcu-

lations are each described in Section 10.3.

One of the novel aspects of this system is its hardware controller

which allows a user to control a model’s Froude number in real-time.

The operation of this controller is discussed in Section 10.3.2.

The final section of this chapter presents experimental data measured

from the animation system and discusses the resultant animations. In

advance of this, a brief overview of the animation system is provided in

the following section.
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10.1 Animation system overview

The animation system presented in this chapter, referred to as the Kine-

matic Gait Transition System (KGTS), kinematically animates a horse

model to move with gait patterns appropriate to its velocity and transi-

tion between adjacent gaits when necessary.

The horse model is constructed as a hierarchical kinematic model

as described in Section 5.2.2. The user controls the model’s motion in

real-time through use of a novel animation control system which utilises

a Musical Instrument Digital Interface (MIDI) controller to manipulate

the model’s Froude number.

The Froude number determines the gait pattern with which the model

moves based on dynamic similarity predictions. These predictions also

dictate when a model should transition to another gait. When this oc-

curs, the transition patterns are dynamically calculated by the KGTS,

as will be discussed in Section 10.3.1.

In addition to moving with the correct gait, for increased realism,

intra-gait increases in velocity cause an increase in limb extent as well

as stride frequency. To dynamically adjust motion data for the current

velocity, gait adjusters are evolved using a GE-based system and an ex-

tended version of the CMA introduced in Chapter 7. These gait adjusters

are the subject of the following section.

10.2 Gait adjusters

The goal of the KGTS is to enable the model to move realistically at

any Froude number, utilising the appropriate gait pattern. To avoid
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generating and storing separate bone rotation data for every possible

Froude number the model may use, a gait adjuster system is employed.

In this system, each of the four natural gaits has its own motion

data file in the summation of sinusoids representation and a specific gait

adjuster function file which can modify its corresponding motion data

depending on the current Froude number.

Original motion data Combination
Gait adjuster
Fr*1*sin(2*pi*t)

Fr: 1.5

Fr: 1.75

Fr: 2.0

Fr: 2.25

Figure 10.1: Illustration of the gait adjuster system. Each adjuster is
a function of the current Froude number Fr and is added to the cur-
rent gait’s motion data to produce the motion with which the model is
animated.

This motion adjuster function exploits the adjustability of the sinu-

soidal representation as illustrated in Figure 10.1. Each gait’s adjuster
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file contains a summation of sinusoidal functions of one or more frequen-

cies whose amplitudes are a function of the current Froude number. The

example in the figure shows a single term gait adjuster function, how-

ever, an adjuster function can be composed of as many terms as necessary.

Each gait adjuster file contains a gait adjuster function for each movable

bone in the model.

A well-defined gait adjuster will modify the current gait’s motion data

to produced realistic motion whilst exhibiting the correct limb extent and

duty factor for the current Froude number. Production of such a gait

adjuster is complex and as such, the Curve Modifier Application (CMA)

introduced in Chapter 7 is extended to aid the process.

10.2.1 Extensions to the CMA

The visualisations provided by the CMA can help a user to manually

develop gait adjuster files which perform satisfactorily for a range of

Froude numbers.

In addition to the CMA’s features described in Section 7.1, the appli-

cation is extended specifically for the gait adjuster development process.

The CMA can be set to automatically test an input gait adjuster file for

a specified range of Froude numbers and return a score based on dynamic

similarity predictions and limb extent. In the example video listed be-

low, a gait adjuster file causes the red bone and motion curve to change

corresponding to the current displayed Froude number.

Video 10.1 Curve Modifier Application
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As the CMA tests a gait adjuster file for each Froude number, that

Froude number is substituted for the free variable in the gait adjuster

data, depicted as Fr in Figure 10.1. The user can then view the effect

of the gait adjuster on both the motion curves and the limb motion in

tandem through the CMA’s visualisations. Changes can be manually

made to the gait adjuster files, and the result of these changes can then

be visually evaluated.

A user manually developing a gait adjuster file must assess whether

or not a gait adjuster produces realistic motion that adheres to the mus-

culoskeletal constraints of the real-life animal. In addition to the visual

aspect of the gait adjuster development process, the CMA also quantifies

the quality of each file as a gait adjuster is scored on its performance

at each Froude number in terms of duty factor and limb extent. The

user must therefore ensure that a gait adjuster file also conforms to these

predictions.

CMA scoring system

The duty factor score is calculated using dynamic similarity predictions.

As the animation is not physics-based, measuring the duty factor is not

simply a case of recording when a hoof is in contact with the ground.

Instead, the position of the hoof is measured throughout the gait cycle.

These positions are compared to the position of the ground plane, cor-

recting for total limb rotation. If the hoof is within a specified threshold

distance of the ground plane vector, that limb is considered to be in its

stance phase.
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Unlike stride length, limb extent cannot be directly predicted using

dynamic similarity. Limb extent is measured as the distance between

the farthest hoof position (in contact with the ground) attained in the

forward and backward directions over a single cycle. In a real-life ani-

mal, limb extent depends on the animal’s velocity and gait pattern, with

greater limb extent usually associated with greater velocity.

For each gait, a range of limb extent values are estimated. The ab-

solute maximum limb extent value is determined by how far the model

can physically extend its limbs. The minimum extent is based on data

pertaining to collected walks [36]. Within these maximum and minimum

limits each gait is assigned a limb extension range. The slower gaits have

low minimum and maximum extent ranges and the faster gaits have high

minimum and maximum extent ranges. A galloping horse for example,

can extend its limbs to the maximum limits but cannot reduce its limb

extent to the lower ranges of a walk.

For each gait, the actual limb extent value predicted for a particular

Froude number is calculated as a function of that Froude number and

the gait’s calculated limb extent range.

Even with the assistance of the CMA’s scoring system however, man-

ual gait adjuster development is nontrivial and an automated approach

is preferable.

10.2.2 GE system

To automate the gait adjuster development process, a GE-based system

is used to evolve the gait adjusters.
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Using GEVA and a suitable grammar, phenotypes are produced in the

gait adjuster data file format. Each file contains a different gait adjuster

function for each movable bone in the model. Each gait adjuster func-

tion comprises a summation of sinusoids of differing frequencies, whose

amplitudes are a function of a free variable and may also be subject to

a combination of mathematical operators and constants. This concept is

illustrated in the examples shown in Figure 10.2. An example grammar

is shown in Listing 10.1.

Fr: 1.5 Fr: 1.75 Fr: 2.0 Fr: 2.25

Fr*2*sin(1*pi*t)

(Fr / 1.5)2*2*sin(1*pi*t)

Figure 10.2: Example gait adjuster curves are displayed for a range of
Froude numbers Fr. The difference in growth-rate of the two curves
demonstrates how by combining mathematical operators, free variables
and constants, a rich variety of adjuster curves may be evolved.

During the optimisation process, evolved gait adjuster files are passed

to the CMA for assessment. The scoring system described in the previous

section acts as the fitness function and the visual aspect of the CMA is

disabled. Each phenotype is tested for a range of Froude numbers and a

fitness score is returned to GEVA. This process continues until a solution

is found or a set number of generations is reached.
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<prog> : := <f curve0> <newline> <f curve1> <newline> . . . <f curve11>

<f curve0> : := <funcs>
. . .
<f curve11> : := <funcs>

<funcs> : := <funcs> <op> <funcs>
| <funct ion>
| <Fr> ∗ <funct ion>
| <zero>

<op> : := + | −

<zero> : := 0

<Fr> : := <Fr> <f r op> <Fr>
| Fr
| <low freq amp var>

<f r op> : := + | − | / | ∗

<funct ion> : := <low freq amp var> ∗ s i n ( <l ow f r eq va r> ∗ 2 ∗ PI ∗ t )
| <med freq amp var> ∗ s i n ( <med freq var> ∗ 2 ∗ PI ∗ t )
| <hi f r eq amp var> ∗ s i n ( <h i f r e q v a r> ∗ 2 ∗ PI ∗ t )

<l ow f r eq va r> : := 1 | 2
<med freq var> : := 3 | 4
<h i f r e q v a r> : := 5 | 6 | 7 | 8

<low freq amp var> : := 0 | 0 .125 | 0 .25 | . . . | 10
<med freq amp var> : := 0 | 0 .05 | 0 .1 | . . . | 2
<hi f r eq amp var> : := 0 | 0 .025 | 0 .05 | . . . | 0 .5

Listing 10.1: An example of a gait adjuster grammar. (Omitted terms
are represented by ‘...’).

Using a grammar similar to the example in Listing 10.1, a satisfactory

gait adjuster file is produced rapidly. The best and average fitness plots

of the gait adjuster evolution are shown in Figure 10.3. The kinematic

nature of the fitness function means that the evolution proceeds at a

much greater pace than a physics-based system. The kinematic model

also avoids issues with stability of motion and therefore the gait adjusters

can simply approximate the desired motion without adverse consequence.

Once gait adjuster data files are evolved for each of the natural gaits,

they are supplied to the KGTS, whose operation is described next.
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Figure 10.3: Gait adjuster evolution. Best and average fitness (aver-
aged, 30 runs) are presented on the top and bottom respectively. (Note
difference in scale.)

10.3 Kinematic Gait Transition System

In this section the functioning of the KGTS is described. The KGTS

animates a horse model using gaits and transitions determined by that

model’s Froude number. As such, information on model construction,

gait patterns, transitions and dynamic similarity must be provided.

The KGTS is supplied with a model data file (Appendix Section

B.1.3) and from this, the model is constructed and animated as a hi-
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erarchical kinematic model, as described in Section 5.2. An additional

file containing 3D polygon mesh data for skinning the model can also be

provided (see Section 2.4.1).

The KGTS must also be supplied with gait phase data (Table B.3),

transition Froude values (Table 4.1) and dynamic similarity power law

equation values (Table 4.2). A motion data file, originally optimised for

use with the physics-based horse model is also supplied for each of the

gaits, in the sinusoidal representation. Finally, a gait adjuster file which is

generated using the GE-based approach described in the previous section

is provided for each of the natural gaits.

The system begins by reading the model and motion data files. Before

the animation starts, the velocity at which the model should move is

calculated based on the current user-specified Froude number and the

model’s hip-height. From this Froude number, the current gait is also

determined and the gait adjusters are then calculated and added to the

current gait’s original motion data. This data is then converted to a set

of rotation values for each bone.

The final value to be calculated is the stride frequency, using Equation

4.4. The limb extent exhibited within a particular gait depends on the

current Froude number and the stride frequency must be modified to

compensate for how the limb extent affects velocity. This final stride

length value is then used to control the rate at which the animation

cycles through each bone’s rotation data and thus the velocity of the

model when the animation begins to run.

During the animation, the rotation values are cycled through pro-

ducing motion until a change in Froude number is flagged. If this new
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Froude value is within the range of the current gait, the gait adjusters are

recalculated to modify the limb extent for the next cycle. If the Froude

value is outside of the current gait’s range, a transition is flagged.

10.3.1 Transitions

When a transition is flagged, the system identifies the two gaits involved

in the transition. For each bone in the model, the final rotation point of

the current gait cycle is stored. The gait that is being transitioned to is

then created. The gait adjusters are calculated and added to the original

motion data for that Froude range and the first rotation point of that

motion data is stored.

The transitional data is then calculated as the average of the two

sinusoidal waveforms (with zero offset) it will be transitioning between.

This average waveform is then converted to the piecewise representation

(Section 6.2.2). The start and end points of the transition data are

adjusted to join up with the stored offset values, as shown previously in

Figure 6.8.

The relative timing of the horse’s footfalls vary from gait to gait,

as was discussed in Section 4.4.2. The timing of each limb’s motion

is referred to here as that limb’s phase value; each value describes the

timing of a footfall with respect to the start of the gait cycle. It should

be noted that this concept of phase is completely unrelated to the phase

values of the sinusoids which describe a joint’s motion.

During a transition, each limb adjusts itself to its new phase value by

either increasing or decreasing its rate of movement. It achieves this by

spreading its motion data over a number of gait cycle stages different to
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the standard number of stages in a cycle (100). To simplify the system,

each limb’s transition is completed over a single transition cycle in which

that limb’s motion is either extended, reduced or unchanged.

For each limb the phase difference value for the current gait is sub-

tracted from the phase difference value for the gait that is being transi-

tioned to. This value will be referred to as the transition phase number,

or TP. If the absolute value of TP is less than 50, than TP is added to

the standard number of stages in a cycle, i.e. 100, yielding the number

of transition cycle stages. If the absolute value of TP is greater than

or equal to 50, the absolute value of TP is subtracted from 100. This

resultant value is then subtracted again from 100 if TP is positive and

added to 100 if TP is negative, yielding the number of stages in the

transition cycle.

Table 10.1: Calculation of the transition cycles stages required for a
canter (current) to a gallop (target) transition. (TP: transition phase
number.)

Limb Current Target TP Calculation Transition

Fore-left 0 0 0 100 + 0 100

Fore-right 80 10 -(70) (100 - 70) + 100 130

Hind-left 80 50 -(30) 100 + -30 70

Hind-right 50 60 10 100 + 10 110

An example of this calculation process is shown in Table 10.1. The

value on the far right of the table is the number of transition cycle stages

and, if the value is not equal to 100, the transition motion is spread

across this extended or reduced cycle, thus changing the phase difference

of the limb.
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The preceding calculations ensure a transition is never excessively

long or short relative to the standard number of cycle stages, creating

smooth transitions between gaits. As previously mentioned, these tran-

sitions are caused by changes in Froude value, as described next.

10.3.2 MIDI control

During the animation, the user can control the model’s motion by ad-

justing its Froude number. Given the dynamic nature of the system,

a complementary control interface has been developed for it. A Korg

nanoKONTROL slim-line MIDI controller [104] is used to adjust the

model’s Froude number and initiate transitions in real-time.

The animation system is controlled by five vertical sliders and a tog-

gle button associated with each slider. An additional Transition button

flags a transition (when in the manual transition mode). A simplified il-

lustration of the controller is shown in Figure 10.4. The user may either

manually move through gait cycles or use the automatic transition mode

in which the system automatically chooses a gait to transition to, based

on the current Froude value.

In manual mode, to intiate a Transition the user selects a gait adjacent

to the current gait, sets the slider and presses Transition. Figure 10.4

presents an example situation. Assuming the current gait is a Walk with

a Froude value of 1.05, Trot is selected and its Froude slider set to 1.8.

The Transition button is pressed and the model transitions from Walk

to Trot during the following cycle. The system allows for continuous up

and down transitions between adjacent gaits.
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Figure 10.4: Simplified illustration of the MIDI controller. A user selects
a gait for transition, sets the slider to a Froude value and then presses
the Transition button.

The automatic transition mode gives a single slider control over the

animal’s Froude value. The user sets this slider to some value along the

entire Froude range. Depending on a setup option, the application either

checks for a Froude value change at the start of each cycle or upon a

press of the Transition button. If the Froude value has not changed, the

model continues to move as it was, otherwise the application checks if the

change indicates a transition. The model will then transition if required.

If it is flagged as a simple change of Froude within the current gait,

the gait adjusters will be calculated and applied. To simplify the system,

any requests for transitions between non-adjacent gaits are ignored.

The Froude number can also be controlled through an input plan

file, written prior to the animation’s commencement. A user can specify

an indefinite sequence of Froude number changes and the number of
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cycles between Froude changes. The experimental data presented in the

following section is collected through this planned approach.

10.4 Animation results

In this section, a series of experimental measurements and animation

data are presented and discussed.

The most important outcome of the KGTS is the resultant animation

and the quality of the gaits and transitions it displays. In the example

video listed below, the MIDI control system is demonstrated with the

horse model transitioning up and down through the four natural gaits.

Video 10.2 Kinematic Gait Transition System

As a visual assessment of any animation is subjective, the calculated

transition phase data and the effect of the gait adjusters on the bone

rotation data are also analysed.

The data presented in this section is collected from a single animation

run using the sequence of gaits and transitions shown in Table 10.2.

Table 10.2: KGTS animation plan.
Gait Froude number Gait cycles

Walk 1.0 3
Trot 2.0 3

Canter 3.0 3
Gallop 4.0 3
Canter 3.0 3
Trot 2.0 3
Walk 1.0 3
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10.4.1 Transition phase data

In Figure 10.5, the limb phase data from the test run is presented. The

diagram displays the phase difference between limbs (thick black bars

represent ground contact) during a continuous run starting from the top-

left. The data is divided into standard gait cycles by the vertical bars

and is therefore not displayed temporally and does not indicate velocity.

FL
HL
HR
FR

FL
HL
HR
FR

FL
HL
HR
FR

WALK TRANSITION TROT

CANTER GALLOP CANTER

TROT WALK

TRANSITION

TRANSITION

TRANSITION

TRANSITION TRANSITION

FL: forelimb left FR: forelimb right
HL: hindlimb left HR: hindlimb right Gait Transition Ground contact Begin transition End transition

}

gait cycle

Figure 10.5: Phase differences for gaits and transitions as calculated by
the application.

From this diagram it can be noted that each of the gaits has the

appropriate limb phase relationship as presented in Table B.3. The gaits

recorded through the sequence of upward transitions are identical to the

gaits recorded during the downward sequence. The diagram also displays

a clear difference between the symmetrical and asymmetrical gaits.

The calculated transition cycle stage values for each limb are pre-

sented in Table 10.3. These values are calculated by the KGTS in the

manner described in Section 10.3.1. In each transition, the system has

ensured that the increase or decrease in movement rate is not extreme

compared to the surrounding data.
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Table 10.3: Calculated transitional cycle stages.

Transition Fore-left Hind-left Hind-right Fore-right

Walk to Trot 100 80 81 99

Trot to Canter 100 125 144 131

Canter to Gallop 100 70 110 130

Gallop to Canter 100 130 90 70

Canter to Trot 100 75 56 69

Trot to Walk 100 120 119 101

10.4.2 Bone rotation data

The plot of a bone’s rotation during the same test run is presented in

Figure 10.6. The stretching effect of the transition cycle can be seen in

the upper image as can the effect of the gait adjuster. For this example,

identical gait data is supplied for the four natural gaits. The evolved gait

adjusters dynamically adjust the data to provide greater limb extent in

the faster gaits and this is reflected in the curve amplitudes.

The lower image displays rotations with respect to a time unit (length

of a Walk cycle). As the model transitions up through the gaits, the stride

frequency increases. This can be seen to the right of the lower image as

the gait cycle motion curves occur more frequently per time unit.

The effect of the gait adjuster on the motion curve’s shape is quite

obvious in Figure 10.6. The smaller peak present in the motion curve

at lower Froude numbers gradually disappears as the Froude number

increases for the faster gaits. In this case, the smoothing of the motion

curve is justified, however, in some cases the gait adjusters may smooth

over important nuances of a motion.
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Figure 10.6: Rotation of the right forelimb’s humerus during locomotion.
The upper image plots rotation against a standard gait cycle. Transition
durations are given in gait cycle stages. The lower image plots rotation
against a time unit equal to one walk cycle.

The extent to which a gait adjuster alters data can be constrained

through the grammar by incorporating knowledge of the original gait

motion data. In addition to this, the gait adjusters could benefit from a

more sophisticated fitness function during their evolution.

10.4.3 Aesthetic realism

The experimental data presented in the previous sections demonstrate

that the KGTS can mimic certain quantifiable aspects of natural motion.

The ultimate reason that detailed gait and transitional information

is included in an animation system is realism. If the on-screen motion

pattern of each gait and transition does not look realistic, than the system

has failed, regardless of what an analysis of the motion data concludes.
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Figure 10.7: The horse model in motion for the four natural gaits.

Figure 10.7 shows screenshots of the four natural gaits taken from a

single run. A visual inspection of the animation shows a model moving

with a natural looking gait. As the initial planned velocity is relatively

slow, the model moves with a walking gait and translates appropriately.

The hooves each appear to make contact with the ground and give the

illusion of a model thrusting itself forward, despite the kinematic nature

of the model.

When a transition is triggered the model smoothly and almost imper-

ceptibly increases or decreases its limb movement to match that of the

target gait. The model now translates at a faster pace as it moves with

a livelier trot.
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The trot to canter transition involves some of the largest phase dif-

ferences between gaits, yet provides a completely smooth and highly

convincing motion. The difference between the symmetrical trot and the

asymmetrical canter is immediately apparent. As the limbs move in syn-

chrony, the impression of greater impulsion is given. In the final upward

transition, the model seamlessly begins moving with a gallop. At close

to maximum speed, the model’s limbs are nearly fully extended. The

transitions back down through the gaits are equally smooth.

Overall the motion appears convincing as the model moves with gaits

appropriate to its velocity and transitions smoothly when necessary.

The most obvious aspect of the animation that could be improved

upon however, are the motions of the back. As the model is not physics-

based, it does not react to gravity or the forces that would be exerted on

it in real-life. As such the back is completely static. A simple solution

to this would be to provide vertical back motion data to the KGTS, if

such data could be acquired or generated. A more sophisticated solution

would involve a real-time analysis of the gait pattern from which the

appropriate back motion could be calculated.

Another obvious issue with this animation is a lack of flexibility in

the lumbosacral joint. During the faster gaits, a horse will often move

its hindquarters in underneath itself to produce greater impulsion. This

motion is known as “tucking” and would significantly increase the realism

of the animation.
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10.5 Chapter summary

In this final chapter of Part III, an animation system is presented in which

a kinematic horse model moves with gaits appropriate to its velocity and

transitions when necessary.

Gait adjusters are introduced which allow a piece of motion data to

be dynamically adjusted according to the model’s Froude number. The

gait adjusters are generated using a GE-based optimisation system and

an extended version of the CMA, originally described in Chapter 7.

The animation system itself is described in terms of its input data and

how the transitions are dynamically calculated. A novel MIDI control

system that allows a user to control an animal’s velocity in real-time is

also presented.

The final section of the chapter discusses some data measured from

an animation run and an evaluation of the resultant animation is given.

It is concluded that accurate modelling of gaits and transitions adds to

the realism of an animal animation.

10.6 Part III summary

The objective of Part III was to describe the experiments that were car-

ried out as evolutionary computation techniques are applied to animal

animation problems. The experiments presented in this part comprise

the major contributions of this thesis. As such, they will be summarised

in the final part of this thesis on conclusions and future work.
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Part IV

Conclusions
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Chapter 11

Conclusions and future work

In the previous chapters, the application of evolutionary computation

techniques, specifically GE, to animal animation has been thoroughly

explored through research, development and experimentation.

In this final chapter, the presented work is summarised in terms of its

contributions and several research questions are answered. This thesis

then concludes with Section 11.2, in which potential directions of future

research are proposed.

11.1 Thesis summary

In this thesis, we have explored many aspects of animation, natural com-

puting and biology in the search for ways to increase the realism of animal

animations using GE. In Part I, extensive background material, some of

which can be directly used to improve animation realism, was presented.

In Part II, the origins of both the model construction data and gait

motion data were explored. The construction and animation of kinematic
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and physics-based horse models using this data was also detailed. In the

final chapter of Part II, a manual attempt to optimise motion data for a

physics-based horse model using the Motion Data Development Environ-

ment was described. It was the difficulties experienced with this manual

process that motivated the GE-based automatic motion generation sys-

tems and experiments.

Each of these experiments focused on a particular research question

posed in Section 1.1.1. In the following section these thesis research

questions are restated and the contributions that resulted from their

investigation are summarised.

11.1.1 Contributions

In Section 1.1.1 it was stated that the overall goal of this thesis is to

explore how observations of natural evolution and evolutionary compu-

tation can be used to produce realistic quadrupedal animal animations,

specifically focusing on GE.

A set of thesis research questions was also presented in Section 1.1.1.

These questions were answered through the development of each of the

main contributions of this thesis. The summaries of these major contri-

butions, presented previously in Section 1.2, are reproduced here adjacent

to their corresponding research question.
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1. Can GE be used to optimise motion data for a physics-based quadruped

model?

(a) Automatic physics-based motion data optimisation

A GE-based system for optimising motion data for a physics-

based quadruped model is presented in Chapter 8 and is pub-

lished [134].

Of all the evolutionary computation methods, Genetic Algo-

rithms (GA) are most commonly applied to motion data op-

timisation problems [73]. Our aim is to explore the use of

Genetic Programming (GP), specifically GE, for the genera-

tion of motion data.

A GP technique’s ability to evolve the structure of a solution,

rather than optimise a fixed set of parameters as in GA, deem

it worthy of investigation for this class of problem. In addition,

recent research indicates that GP techniques perform well if

not better at certain motion generation problems [175].

The system presented in this thesis signifies the first time GE

has been applied to an animation problem, specifically that of

motion generation. In this system a GE implementation con-

trols the evolutionary search while a physics-based quadruped

simulation application acts as the fitness function.

Animating physics-based quadruped animal models is a chal-

lenging issue in computer animation. The motion data op-

timised by GE moves a physics-based quadruped model in a

realistic and stable manner.

297



(b) Measured motion data

The issue of the inclusion of domain knowledge into the gait

generation approach, in the form of motion data measured

from a real-life animal, is also tackled in Chapter 8 and is

published [134].

The question of domain knowledge inclusion and optimal AI

ratio in GP is open [151]. We compare grammars that opti-

mise motion data and grammars that are free to evolve novel

motion. Some of the free-style grammars have no domain

knowledge whatsoever and others have knowledge of an ani-

mal’s muscles implicitly included in the grammar.

Those grammars that optimise motion data produce highly

realistic, physics-based animal motions. The free-style gram-

mars in comparison produce unique motions that allow the

model to locomote at a high rate of speed, albeit without

regard for the physical limits of the real-life animal. In the

grammars which implicitly include muscle information, many

of the motions produced are comparable to that of a horse. A

more sophisticated fitness function may further improve these

results.

It is concluded that for realistic motion, domain knowledge

must be included to some degree.

(c) Rate of evolution

In an evolutionary system, modularly varying goals can speed

up the evolutionary process [98]. Inspired by this finding, we
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explore how the rate of an evolution can be affected through

two experiments, presented in Chapter 8 and published [134].

We investigate whether generationally varying the weights of

the fitness function components can replicate this speed-up.

In an expansion of this idea, the generational locking and un-

locking of joints in the quadruped model is also explored.

Speed-up is only observed locally in the varying fitness func-

tion experiment and not at all in the joint locking experiment.

In the latter experiment however, the number of valid, sta-

ble motion producing phenotypes produced from the earliest

generations is greatly increased through the limiting of joint

motion at the start of an evolution.

(d) Terrain

In the final experiment presented in Chapter 8, terrain traver-

sal is briefly explored. The manner in which a model traverses

uneven terrain is another difficult and open issue for physics-

based animal models. In response to this problem we employ a

GE-based system to generate the motion required to traverse

a simple terrain.

The result is impressive as an optimised motion allows the

horse model to traverse a terrain at approximately twice the

speed of a model whose motion is optimised for a flat running

surface. This result demonstrates GE’s potential to evolve

more sophisticated terrain motion controllers for physics-based

animal models and even robots.
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2. Can GE be used to retarget motion data from one physics-based

quadruped model to another model of a different species?

Interspecies motion retargeting

A GE-based system for retargeting motion data measured from

one animal to an animal model of another species is presented in

Section 9.1 and published [132].

The retargeting of motions between characters often requires much

adaptation and adjustment. This “motion retargeting problem”,

as it is dubbed, remains a topic of much research [71, 128, 83].

The retargeting system presented in this thesis represents the first

time an evolutionary computation technique has been applied to

a quadruped model motion data retargeting problem. The system

uses a GE implementation and quadruped simulation application

to evolve motion data through a series of hybrid models towards a

target animal model.

Both a discrete and continuous evolution system are described and

experiments involving a horse to dog retargeting are presented. The

retargeting attempts are found to be unsatisfactory mainly due to

the large number of variables involved and inaccuracies of the joint-

torque calculations in the hybrid models.
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3. Can GE be used to optimise motion data for multiple physics-based

quadruped models of differing skeletal proportions for the animation

of herd scenes?

Multiple models

A GE-based system for generating motion data for multiple auto-

matically generated quadruped models of differing skeletal propor-

tions is presented in Section 9.2 and published [135].

Using a GE implementation and a quadruped simulation appli-

cation which generates models from allometric data and acts as

a fitness function, physics-based horse models of differing propor-

tions are generated based on an age parameter and animated using

evolved motion data.

Sequential and parallel approaches to model parameter and mo-

tion data optimisation are also explored. The sequential approach

to model parameter optimisation is found to be best and GE is

successful at generating motion data for multiple differing models

in a herd scene.

4. Can GE be used to evolve functions that can dynamically adjust a

kinematic model’s motion based on its velocity and observations of

natural locomotion?

Kinematic gait and transition animation system

Research is ongoing on the use of GP techniques for the evolution

of controllers for various problems [2, 64]. A GE-based system for

evolving functions which dynamically alter a model’s motion pat-
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tern based on its velocity is presented in Chapter 10 and published

[133].

This is the first occasion that GE has been employed for the gener-

ation of dynamic motion controllers. These motion adjuster func-

tions are evolved for use in a kinematic quadruped animation sys-

tem which animates a model with gaits and transitions determined

by a user-controlled velocity parameter.

The GE-evolved dynamic adjusters are found to increase the real-

ism of an animation by allowing a model’s limb extents to reflect

those observed in nature.

11.1.2 Research and implementation decisions

In addition to the thesis research questions posed in the previous section,

an additional set of broader questions relating to animation, biology and

natural computing were also originally raised in Section 1.3. It was sug-

gested in that section that as the specific thesis research questions were

addressed through research, development and experimentation, it would

be necessary to answer these broader questions to provide a suitable prob-

lem domain in which to explore evolutionary computation techniques and

limit the overall scope of the research.

That suggestion was extremely apt, as each of these questions has

been answered to some degree, either directly or indirectly over the course

of the research. In this section, those questions are stated again and a

very brief answer is given to each, based specifically on the findings of

this thesis.
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Animation

Which animation methods can be used for animal animation?

Both kinematic and physics-based animal animation systems are ex-

perimented with in this thesis. Whilst the physics-based animal ani-

mations are highly realistic given suitable motion data, the issues with

stability and cost of motion data generation can limit their use. Kine-

matic animations on the other hand are more easily created yet their

lack of physical constraints can be obvious unless care is taken when

specifying a model’s motion.

It can be concluded that physics-based techniques are an excellent

choice when highly realistic motion is required, the necessary data is

available and issues related to the real-time nature of physical simula-

tion are not a factor. Kinematic animations in contrast are suitable for

all situations when extreme physical realism is not a priority. In video

games for example, the low computational expense, predictability and

simplicity of a kinematic animation often make it the method of choice.

How can animal models be represented, constructed and animated?

The construction of both kinematic and physics-based models is thor-

oughly discussed in Chapter 5, using skeletal data taken from the biology

literature. A simple hierarchical model approach to construction and an-

imation is used for the kinematic model.

The physics-based model is constructed from ODE’s simple primi-

tives, using a specific sequence of positioning steps. The model is then

animated using motion controllers based on a spring-damper system. The
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animation process of both models requires some measured motion data

if realism is the goal.

What is the best source of motion data for animations?

It is concluded in Section 6.1 that motion data extracted from pho-

tographs is inaccurate and motion capture techniques are prohibitively

expensive. The motion data optimisation experiments presented in this

thesis all produced motion based on a single piece of data extracted from

a published source.

How can motion data be intuitively represented for animation systems?

Rather than store the extracted motion data as a set of discrete val-

ues, two intuitive motion data representations are presented in Section

6.2.1 and Section 6.2.2. The sinusoidal and piecewise representations

are successfully used in the experiments in this thesis for representing

cyclical and acyclical data respectively. The sinusoidal representation in

particular is easily incorporated into a grammar and evolved through the

concatenation of functions.

Can motion data be manually generated or optimised?

Efforts to manually tune motion data for a particular physics-based

horse model were described during a discussion of the Motion Data De-

velopment Environment in Section 7.2. While the resultant animation is

relatively impressive, the time taken to manually adjust the model pa-

rameters and motion data for a single gait renders the manual approach

ineffectual.
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Biology

Which aspects of an animal’s musculoskeletal system are most important

when creating an animation?

The horse models used in the experiments presented in this thesis are

constructed and animated using accurate anatomical and physiological

data. The musculoskeletal system of a horse is explored in Section 4.3

and the simplifications that can be made to the skeleton to produce a

model for animation are presented in Section 5.1.2.

It is concluded that the long bones of the skeleton are the most impor-

tant for modelling motion, whilst the flat bones give a model its structure.

Any set of bones connected by joints that allow little or no movement

can be treated as a single segment. The physical limits of joints are also

important when creating a model. By preventing a joint from rotating

past its real-life limit, physical realism is enforced on the model.

In this thesis, the individual muscles of the horse are not considered.

Instead the motion that these muscles creates in a bone is modelled

through the application of torques about a joint. An animal’s muscles

could be modelled however, in a more sophisticated model.

What aspects of dynamic similarity theory can be exploited for anima-

tion purposes?

The predictions of dynamic similarity theory play a crucial role in

every one of the animation systems and experiments presented in this

thesis. Described in Section 4.5, a model’s Froude number determines

the gait pattern with which it moves and the fitness functions used in each
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of the motion generation systems rely on dynamic similarity predictions

of stride length and duty factor.

Natural computing

How can motion data be represented in a GE grammar?

The process by which motion data, in the summation of sinusoids

representation, is included in a grammar is discussed in Section 8.1.1. As

well as motion data, evolvable model data and spring-damper coefficients

have also been easily incorporated into a grammar in the same manner.

Using an application such as the Grammar Writer, introduced in Sec-

tion 9.1.1, a user can automatically create a grammar which includes

large sets of numerical constants, based on a relatively small set of ap-

plication parameters.

What type of fitness function can be used to evaluate an animal model’s

motion?

The fitness functions used in each experiment have differed in terms

of their components, yet all have utilised dynamic similarity predictions

to some degree. In essence, the fitness function can take any form as

long as it can evaluate the phenotypic motion data and return a score

based on some motion quality factors. In this thesis, the quality of a

gait motion is evaluated in terms of stride length, duty factor and energy

efficiency.

306



Are multivariable fitness functions viable for motion generation prob-

lems?

All of the fitness functions presented in this thesis are multivariable to

some degree and have performed well in most scenarios. In cases when

the evolutionary search space is very large however, the multivariable

fitness function is unable to guide the evolution towards its target.

The weighting system of the fitness functions, described in Section

8.1.2, allows a user to tune the fitness function for a particular task.

This is important as often two measures of fitness may be in conflict

with each other, and the user can decide which component holds more

influence in the final score.

How does the size of the search space affect the quality of generated mo-

tion data?

For experiments such as the continuous motion retargeting system in

Section 9.1.2, the large search space seriously hinders the evolutionary

search and the nature of the solutions found can vary hugely from run

to run. Based on observations of the experiments in this thesis, high

quality motion data is only generated when the optimisation is suitably

constrained and the search space reduced.

Would human involvement through an interactive fitness function assist

a motion generation problem?

In situations where the optimisation is relatively unconstrained, such

as with the free-style grammars in Section 8.2.2, the basic “shape” of

the produced motion may be determined in the early generations of the

307



evolution. The direction taken may exhibit exactly the type of motion

one would wish to evolve or it may be essentially unusable. By having

a human direct the evolution in the early stages, these less-constrained

grammars may become more useful.

Could use of a multi-objective evolutionary algorithm be of benefit for

motion data optimisation?

As each of the fitness functions in this thesis are multivariable, a

multi-objective evolutionary algorithm may be advantageous [46]. The

performance of multi-objective evolutionary algorithms does not scale

well with a large number of objectives however, and the experiments in

this thesis include up to five fitness objectives.

Our simple weighted multivariable fitness function performs well with

the GE search when the optimisation is suitably constrained and it may

therefore be more benefitial to focus on developing these constraints

rather than the search.

11.2 Future research directions

There are a multitude of future directions that the research presented in

this thesis could take. These range from directly improving on the results

presented in this thesis, to applying a GE-based optimisation approach

to a variety of other animation problems.

In this final section of the thesis, we suggest a variety of future work

directions that a GE approach to animation could take.
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Fitness function

While the presented fitness functions perform well, the simplistic weight-

ing system could perhaps be improved upon. Although the experiment

in Section 8.3, in which the fitness weights were generationally varied,

did not speed up the evolution rate, this concept is certainly worthy of

further examination.

Additionally, the issue of how the realism of a motion is judged could

also be explored, possibly leading to the development of new, more ef-

fective fitness components.

Multi-objective evolutionary search

Motion data optimisation problems appear to be good candidates for the

use of a multi-objective evolutionary algorithm, such as NSGA-II [46].

Multi-objective evolutionary algorithms perform well when a small num-

ber of objectives are involved, however, the motion data problems in this

thesis have involved up to five objectives. Recently however, interest is

growing in an evolutionary search method called many-objective opti-

misation [114] which is designed to perform well with larger numbers of

objectives.

Physics-based model improvements

The manner in which the motion controller calculates the joint-torques

in the physics-based models is not ideal, as instability problems are com-

mon. It may be beneficial to investigate the use of an inverse dynamics-

based approach, as is common in the robotics field.
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While this would increase the complexity of the motion torque cal-

culations significantly, it would stop the stability issues caused by incor-

rectly set s-d coefficients. Adaptive control systems could also be inves-

tigated. These complex systems assume little about their environment

and rely on feedback loops to assess the model and its environmental

state at any given time. The joint-torques are then calculated based on

this information.

Domain knowledge

Those grammars that did not include seed data, but implicitly included

knowledge of an animal’s muscles through sinusoidal functions produced

results that were comparable to a real-life horse. This technique may be

explored further through the implicit inclusion of other anatomical and

behavioural information. The motion data generation problem could be

used in future as the basis for a fuller exploration of ideal AI ratio [151].

Rate of evolution revisited

The experiments on evolution rate presented in Section 8.3 did not pro-

duce any speed-up, although they did provide some interesting results

regarding generational phenotype stability. In the future, the modularly

varying goals technique [98] could be more rigourously investigated.

Motion retargeting revisited

Without the s-d coefficient tuning issue, the motion retargeting experi-

ments could be reattempted. Using more stable models, it may be pos-

sible to retarget motion data using the current system.
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Physics-based Gait Transition System

The user-controllable gait and transition animation system presented in

Chapter 10 is based on kinematic animation. A kinematic approach is

chosen, in part, as the manner in which the transition motion data is

calculated would not produce stable enough motion data for a physics-

based model to move with. Additionally, the accuracy of the dynamic

gait adjusters would need to be increased significantly to produce stable

physics-based model motion at every Froude number.

Improvements to the torque calculation system in the physics-based

model would greatly increase its tolerance of unstable data. The gait

adjuster file system described in Section 10.2 could also be replaced by

a dynamic motion controller. The controller could be evolved by a GE

system to function in a manner similar to the gait adjuster files, while

adjusting the motion in an accurate enough manner to provide stable

physics-based motion. This range of improvements could allow the Kine-

matic Gait Transition System to be modified for use with the physics-

based model.

Uneven terrain, balance and direction

The issue of uneven terrain was introduced through a short experiment in

Section 8.4. The experiment was successful, although the problem itself

was very narrow. Terrain traversal, balance and direction control are all

determined to some extent by foot placement. Given some well-defined

problem, optimal foot placements could be evolved using GE.
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The problem with this is that balance and uneven terrain are not well

defined, consistent problems. One could attempt to use GE to tackle

these challenges by evolving a controller that could dynamically calcu-

late the correct foot placements depending on the current state of the

model and environmental information obtained from a force feedback

mechanism.

Path planning

Closely linked to terrain, balance and direction is the issue of path plan-

ning. Path planning problems can range from choosing a sequence of foot

placement positions, to choosing the path an animal model must take to

avoid obstacles. A GE-based system similar to what is presented in this

thesis could be applied to this problem.

Passive dynamics

The continuous motion retargeting system in Section 9.1.2 utilised gram-

mars that allowed the dimensions of the model’s bones themselves to

evolve. This concept could be taken a step further and applied to the

generation of passive dynamic models which are constructed to utilise

the momentum of their swinging limbs to improve efficiency.

A passive dynamic model could be evolved using a GE-based system

similar to those described in this thesis. Rather than scoring the energy

efficiency of a gait motion however, the fitness function could score the

energy efficiency of the model itself.

312



Glossary

Abduction Movement away from the body’s midline, 107

Adduction Movement towards the body’s midline, 107

Allele One of two or more variations of a particular

gene, 326

Allometry Study of how body parts grow at different

rates, 115

Amphiarthrosis A joint allowing very small movement, as

found in the spine joining vertebrae, 106

Anatomical position Standing position used as a reference when de-

scribing the position of body parts in relation

to each other, 335

Arity Number of arguments or operands to a func-

tion, 69

Ball and socket joint Allows flexion, extension, abduction, adduc-

tion and rotation, e.g. shoulder, hip, 108

Bone A hard rigid connective tissue which forms the

endoskeleton of vertebrates, 105
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Cartilage A stiff connective tissue that provides cush-

ioning and support, 105

Caudal Located towards the tail, 336

Chromosomal crossover The exchange of genetic material between ho-

mologous chromosomes, 331

Chromosome A container for DNA within an organism’s

cells, 323

Codon A genetic unit of DNA or RNA comprising

three nucleotides, 325

Collagen A group of proteins that make up connective

tissues, 105

Conformation The shape or structure of an animal, 101

Cranial Located towards the head, 336

Cursorial Possessing limbs adapted for running, 103

Diarthrosis A joint allowing a large range of movements,

as found in the shoulder, 106

Diploid Contains two sets of chromosomes, one from

each parent, 323

Distal Located away from the centre (the opposite of

proximal), 336

DNA Deoxyribonucleic acid: a molecule of nucleic

acid which carries the instructions used in the

development and functioning of all known liv-

ing organisms, 322
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Dorsal Located towards the back or away from the

ground, 336

Extension Movement of a joint where the joint-angle in-

creases along the sagittal plane, i.e. backward

to forward, 107

Flexion Movement of a joint where the joint-angle de-

creases along the sagittal plane, i.e. forward

to backward, 107

Frontal plane Perpendicular to the ground, divides the body

into front and back halves, 336

Gene A segment of DNA that specifies some par-

ticular trait or behaviour within an organism,

323

Genetic code The genetic code is a set of rules that allow liv-

ing cells to translate the information encoded

in DNA or mRNA sequences into amino acid

sequences, 325

Genetic recombination The rearrangement of genetic material, 330

Genome The complete set of genetic material in a cell

or organism, 325

Genotype The genetic constitution of an organism, 325
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Hinge joint Allows flexion and extension, e.g. elbow, knee,

108

Horizontal plane Passes through the middle of the body hor-

izontally, dividing it into top and bottom

halves, 336

Lateral Relating to the side, away from the body’s

midline, 336

Ligament A fibrous connective tissue that attaches bone

to bone, 105

Locus The specific location of a particular gene on a

chromosome, 324

Medial Relating to the middle, towards the body’s

midline, 336

Median plane Passes through the middle of the body verti-

cally, dividing it into left and right halves, 336

Meiosis A process which in animals results in the for-

mation of the gametes; ova and sperm in mam-

mals, 331

Muscle A contractive tissue that can produce force

and movement, 104

Mutation A change in the DNA sequence of a cell’s

genome, 332
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Nucleotide Nucleotides are molecules which act as the

structural units of DNA and RNA, 322

Phenotype The observable characteristics of an organism,

325

Proximal Located towards the centre (the opposite of

distal), 336

Reproduction The biological process in which parent organ-

isms produce a new individual organism, 329

RNA Ribonucleic acid: a molecule of nucleic acid

central to protein synthesis, 322

Rotation Circular movement around a central point or

axis, 107

Sagittal plane Passes through the body parallel to the me-

dian plane, 336

Selection A process in which genetic characteristics and

environmental factors determine whether an

organism survives and reproduces, 328

Synarthrosis A usually fibrous joint that allows little or no

movement, as found in the skull, 106

Synovial joint See Diarthrosis, 106

317



Tendon A fibrous connective tissue that attaches mus-

cle to bone, 105

Tissue A tissue is a collection of specialised cells and

products of these cells, 104

Trait A distinct feature or quantifiable measure-

ment of an organism, 323

Transcription The copying of a DNA sequence into an equiv-

alent RNA sequence, 324

Translation A process when mRNA is decoded to produce

an amino acid chain, 324

Transverse plane Passes through the body horizontally, parallel

to the ground, at right angles to the median

plane, 336
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Appendix A

Appendix A contains additional information pertaining to Part I.

This supplementary material contains introductions, explanations and

terminology relating to some of the sections in the related work portion

of this thesis.
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A.1 Genetics overview

Genetics is the science of variation and heredity in living organisms. Top-

ics covered in this thesis, such as natural evolution of the horse (Section

4.1.1), breeding (Section 4.1.2) and dynamic similarity (Section 4.5) are

all based around the fundamental truth that living organisms inherit the

features of their parents.

A full introduction to genetics can be found in the literature [76, 82]

and the following section lists the rudimentary elements, processes and

terminology of genetics which relate to evolutionary computation (Sec-

tion 3.2). This is followed by an overview of the evolutionary process.

A.1.1 Genetic terminology

In the following subsections, those elements of genetics which are com-

monly referred to in relation to evolutionary computation, are outlined.

The descriptions presented here have been simplified in some cases in

order to plainly communicate basic function and composition. For ex-

ample, details of chemical composition and variation have been omitted

as they are not relevant to the subject of evolutionary computation.

What is very relevant however, is DNA and RNA. These are funda-

mental elements of genetics and life in general, and this section com-

mences with a description of both.

DNA

Deoxyribonucleic acid (DNA) is a long molecule of nucleic acid, resem-

bling a vertically twisting ladder. DNA carries the instructions used in
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the development and functioning of all known living organisms. Some

segments of DNA, called genes, are used to construct cell components

such as proteins and RNA (described below). Other segments of DNA

control the use of genes or are present for structural purposes.

DNA comprises sequences of nucleotides which are molecules com-

posed of a nucleobase, a sugar and between one and three phosphate

groups. There are five primary types of nucleobase: cytosine (C), gua-

nine (G), adenine (A), thymine (T) and uracil (U). In genetics these

nucleobases are simply referred to as bases.

Each nucleotide in DNA contains one of four primary types of bases:

C, G, A and T. DNA also contains other modified bases. The sequence of

nucleotides found along the two strands of a double helix of DNA encodes

information which can be read using the genetic code, described below.

RNA

Ribonucleic acid (RNA) is also a long molecule of nucleic acid which

comprises nucleotides similar to DNA, but with structural and func-

tional differences. Structurally, whilst DNA has two strands, RNA is

generally single stranded and is usually shorter than DNA. In addition,

the nucleotides in RNA contain the same bases of DNA except that T is

replaced by U.

Functionally, RNA is fundamental to protein synthesis where mes-

senger RNA (mRNA) carries DNA information to be be translated into

proteins. This DNA information that encodes the instructions for protein

construction is stored in chromosomes.
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Chromosome

A chromosome is basically a container for DNA within an organism’s

cells. Within each chromosome, a single piece of DNA is stored com-

pactly. The size of chromosomes varies greatly between species as the

number of nucleotides in the resident DNA strand ranges between 10,000

and 1,000,000,000.

The number of chromosomes present in a cell also varies greatly be-

tween species. For example, healthy humans have 46 chromosomes whilst

horses have 64. A fruit fly has 8 and a Kingfisher has 132. Most organisms

are diploid meaning that they have two complete sets of chromosomes,

one from each parent. These sets of chromosomes are stored in nearly

every cell in an organism’s body and contain an organism’s genes.

Gene

A trait is defined as a distinct feature or quantifiable measurement of an

organism. A gene is a segment of DNA that specifies a particular trait

or behaviour within that organism. Each gene is a unit of heredity that

allows traits and behaviours to be passed from parent to offspring. Traits

can also be environmentally determined.

A DNA strand contains multiple individual genes. Each gene pro-

vides instructions for producing RNA or a protein which has a particular

function within the organism. In humans, the number of genes stored in

each chromosome ranges from 400 to 3340.

The specific location of a particular gene on a chromosome is called

a locus. Each of the loci contains a gene specifying a particular trait.
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The process by which information from a gene is used to realise the

described trait is called gene expression and involves the transcription

and translation of information encoded in DNA into the gene product.

Transcription and translation

Transcription is the copying of a DNA sequence into an equivalent RNA

sequence. As DNA and RNA are structurally similar nucleic acids, cer-

tain enzymes can be used to convert back and forth between them. The

stretch of DNA that is to be transcribed into an RNA molecule encodes

at least one gene and is called a transcription unit. Transcription is the

first step in the process of converting information from a gene into the

functional gene product.

In the case of a gene which describes a protein, the transcription re-

sults in mRNA being produced. The mRNA is then used to create the

protein in a process called translation, the first stage of protein biosynthe-

sis. In translation, the mRNA is decoded to produce an amino acid chain.

Processes that follow translation include post-translational modification

and protein folding, which eventually produces an active protein. The

translation process itself is directed by a set of rules known as a genetic

code.

Genetic code

A genetic code is a set of rules that allow living cells to translate the

information encoded in DNA or mRNA sequences into amino acid se-

quences (proteins). The genetic material (DNA or mRNA) is divided

into sets of three nucleotides, called codons. A genetic code defines the
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mapping between codons and amino acids, with a single codon usually

specifying a single amino acid. As DNA and mRNA are constructed of

a maximum of four possible nucleotide types each, there are 43 possible

codons and multiple codons can specify the same amino acid.

Genome

The complete set of genetic material in a cell or organism is called the

genome. The genome encompasses all of an organism’s hereditary infor-

mation including all chromosomes, their component genes and sequences

of DNA present for non-coding purposes.

Whilst the genome refers to the base composition of an individual

organism, the word genotype generally refers to how an individual or-

ganism’s base composition is specialised or differs from other individuals

of its species. Genotype is often contrasted with phenotype which is the

set of observable characteristics of an organism. The phenotype arises

from the interaction of the genotype with an environment.

The observable traits in the phenotype of an organism differ between

individuals of the same species. This variation drives the evolutionary

process and is explained by the presence of alleles.

Allele

An allele is one of two or more variations of a particular gene, found at

the same locus. All organisms of a species will have the same set of genes,

however, some individuals may have multiple alleles of their genes. As

the DNA sequence of each allele is different, different traits may result,

however, sometimes different alleles have the same resultant trait. For
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example, all humans will have a gene that provides the basic instruction

for eye colour, however, a green-eyed individual has a green-eye allele of

that gene and a brown-eyed individual has a brown-eye allele.

Diploid organisms have a copy of each gene on each chromosome. If

alleles found at a particular locus in the two corresponding chromosomes

match, they are said to be homozygotes. If they are different they are

said to be heterozygotes.

If the alleles at a particular locus are homozygotes, a trait encoded by

both matching alleles will be observable. In the case of heterozygotes, the

interaction between the disparate alleles is described as either dominant

or recessive. One of the alleles is described as dominant if an observed

trait is attributed to it whilst the other allele is described as recessive if

its influence on a particular trait is non-existent. Often one allele is not

found to be completely dominant over another. An allele is considered

incomplete dominant if its trait is more predominant than the other

allele, yet that other allele has some influence on the resultant trait. If

that trait is found to be a near-perfect mix of the two alleles’ traits, they

are both considered semi-dominant. Alleles are considered co-dominant

if the heterozygote’s phenotype displays contributions from both alleles.

This description of alleles is important as it begins to explain how the

offspring of two parents inherit a mixture of their traits. The reproductive

process and the inheritance of traits is fundamental to the evolutionary

process.
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Parents
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ent
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    Variety
GenerationBiological Evolution

Figure A.1: The cycle of biological evolution. (Horse evolution image ©
National Taiwan Science Education Center [192])

A.1.2 Evolutionary processes

Evolution is the change in the inherited traits of a population of organ-

isms though successive generations [62].

Figure A.1 presents a simplified illustration of the evolutionary en-

gine; the process which drives biological evolution. The process occurs

within a developing population of individuals in which individuals can

die off or survive to produce offspring.

From a population, individuals are selected based on fitness. Through

reproduction parents produce offspring. During the reproduction process,

the genetic makeup of the offspring is varied through mutation and the

recombination process. These offspring individuals then replace members

of the current population. From this evolutionary cycle, the concepts

which have led to the development of evolutionary computation are taken.

The topics which pertain directly to evolutionary computation, namely

selection, reproduction, recombination and mutation are described in the

following subsections.
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Selection

In general, individuals selected for reproduction tend to be the fittest.

The selected individuals may possess some trait or characteristic that

allows them to adapt and survive in the current environment better than

other members of the population. Individuals selected because of some

advantageous trait may contribute a greater relative proportion of off-

spring to the next generation than those without that trait. If the par-

ent individual’s advantageous trait has a genetic basis, the offspring may

inherit it depending on the dominance of the corresponding allele, in-

creasing the prevalence of individuals with that trait in subsequent gen-

erations. These adaptive traits may eventually become universal to the

population (or species) if selection is intense and persistent and when

this occurs, the population (or species) is considered to have evolved.

Depending on the environment, selection can take place on an organ-

ism at any point in its life cycle, from the moment of conception though

its time as an adult. The selection of an organism depends on selective

pressures such as food, environmental conditions, predators, health and

presence of mates. Regardless of selection pressures however, selection

can only occur if there is variation amongst the individuals in a popula-

tion. If there are no individuals in a population that can survive or take

advantage of a certain selection pressure then selection will not occur.

It is this selection process that drives the evolution of a biological

species. Commonly referred to as “survival of the fittest”, individuals

in a population are positively or negatively selected based upon their

relative ability to survive and reproduce.
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Reproduction

Reproduction is the biological process in which parent organisms produce

a new individual organism; their offspring. All known life-forms repro-

duce and each individual organism is itself a product of reproduction.

Reproduction can be either asexual or sexual. In asexual reproduc-

tion, an individual organism can reproduce without the participation of

another organism. The offspring individual will be genetically similar or

identical to the parent as no genetic material from another individual

is involved in the process. Variations in the offspring’s DNA are only

brought about through mutation (as described below). This provides

very little variation to the genetics of offspring organisms, implying that

asexual reproduction may not allow for fast adaptation to a changing

environment.

Most plants have the ability to asexually reproduce. Asexual repro-

duction among vertebrates does occur in some reptiles and fish and on

very rare occasions, in birds and sharks.

In sexual reproduction, two individuals are required, one from each

sex. The offspring individuals will have a combination of the genetic

material from both parents. It is usually the case that the parents are

different members of the population, although only one organism is re-

quired in cases of self-fertilisation. By combining the genetic material

of two individuals, as opposed to one in asexual reproduction, offspring

organisms of sexual reproduction achieve greater genetic diversity. In

theory, this diversity allows a species to adapt to a changing environ-

ment better than offspring created through asexual reproduction.
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For species that sexually reproduce, each parent organism has a par-

ticular set of traits encoded in its own set of genes. The offspring or-

ganism inherits a single allele for each trait from each parent, ensuring

that the organism has a combination of its parents’ genes. The observ-

able organism, or phenotype, will display a combination of traits from

its parents depending on the dominance of each allele relative to one

another.

During this reproduction process, the genetic variation of the offspring

from its parents is further increased through genetic recombination.

Genetic Recombination

Genetic recombination is the rearrangement of genetic material as molecules

such as DNA are broken and joined to other molecules. This rearrange-

ment of genes promotes genetic variation, which allows natural selection

to occur. In asexual reproduction, genetic variation is particularly im-

portant as it prevents the genomes in a population from accumulating

irreversible deleterious mutations (permanent loss of DNA sequences).

In sexual reproduction, chromosomal crossover is a genetic recombina-

tion process that occurs during meiosis, a process that in animals results

in the formation of the gametes; ova and sperm in mammals. Chro-

mosomal crossover most often occurs as matching regions on the paired

chromosomes, one from each parent, split and reconnect to the other

chromosome, as illustrated in Figure A.2. This recombination shuffles

the gene content between the male and female homologous chromosomes,

allowing for variation in the inherited alleles that can potentially result

in new beneficial allele combinations.
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M F M F C1 C2

Original Crossover point Crossed-over

Figure A.2: Illustration of chromosomal crossover. The two chromosomes
M (Male) and F (Female) are parental chromosomes which break at the
crossover point and then rejoin creating new chromosomes C1 and C2,
which each contain genetic material from both parents.

Occurrences of crossover imply that a selection of both parent’s alleles

are inherited. Without this crossover, all alleles from both parents would

be inherited together.

The frequency of recombination differs between gene combinations

and is described in terms of genetic distance [137], a topic which does

not fall within the scope of this thesis.

Chromosomal crossover provides an element of genetic variation dur-

ing sexual reproduction, and in addition to this, mutations augment the

genetic variety of a population.

Mutation

A mutation is a change in the DNA sequence of an organism’s genome

in which the order of the nucleotides, and thus the bases, is changed.
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Whilst mutations may occur due to environmental factors and viruses,

this discussion focuses on errors that occur during meiosis.

As gametes are formed, mutations may have no effect, they could alter

the gene product (the RNA or protein) or stop a gene from functioning

altogether. Mutations occur rarely and most are deleterious or have lit-

tle observable effect, however, on occasion a mutation can increase an

individuals fitness and cause that individual to be favoured by natural

selection. Mutations which increase fitness of a phenotype are referred

to as advantageous mutations. Those which decrease fitness are called

deleterious mutations. Mutations which have little or no effect on phe-

notypic fitness are referred to as nearly neutral and neutral mutations

respectively. Some common types of mutation are show in Figure A.3.

Single chromosome mutations

Deletion Duplication Inversion

A

B

A B

Insertion

A

B

Derivative A

Translocation

Derivative B

Mutation between chromosomes Mutation between chromosomes

Figure A.3: Various types of chromosomal mutation. In the examples
involving two chromosomes, A and B refer to distinct chromosomes.

A comprehension of the causes, types and likely locations of mu-

tations is not prerequisite to understanding evolutionary computation

techniques. The application of concepts such as mutations however, is

discussed in relation to evolutionary algorithms (Sections 3.3, 3.4 and

3.5).
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A.2 Horse conformation

The following are some general observations of ideal conformation that

apply to most breeds of horse, adapted from [157]:

• Scapula: ideally should be 45◦ to the horizontal, the length of the

scapula affects stride length. Horses adapted for fast running tend

to have a more sloping scapula to provide greater stride length.

Draught horses tend to have a more upright scapula yielding power

at the expense of stride length.

• Humerus: should ideally be sloped at 60◦ to the horizontal for shock

absorption.

• Elbow joint: the distance from the elbow to the ground should

be equal to the distance from the elbow to the withers (the ridge

between the scapula).

• Pastern: the hoof-pastern angle should be similar to the scapula

(i.e. 45◦). As with the scapula, horses adapted for fast running

tend to have a more sloping pastern to give greater stride lengths

whilst Draught horses tend to have a more upright pastern.

• Hoof: the ideal hoof angle is 45-50◦ for the forelimb and 50-55◦ for

the the hindlimb.

• Pelvis and Hip: the movement of the pelvis and the hip should be

balanced with that of the shoulder.

• Back: if the animal’s back is too long it will be less able to tuck

its hindquarters underneath its body during fast locomotion. If the

back is too short it may lack flexibility.
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The conformation of the neck can be critical to an animal’s balance. The

following list of neck types is adapted from [81]:

• Low-set neck: projects out from the front of the chest and is good

for forward balance and moving on the forehand.

• High-set neck: rises up from the shoulders and makes collection

easier (carrying more weight on the hindquarters).

• Ewe neck: dips on the top and bulges underneath with flexion at

the poll joint (between neck and head).

• Bull neck: short, thick and heavy; tends to favor short strides.

• Long neck: horses with long necks can benefit from a longer stride

as the long muscles of the neck help to draw forward the forelimbs,

however, too much length can cause balancing issues
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A.3 Terminology for anatomical location

The following is a list of terms, adapted from [77], used to describe the

position of body segments of the horse (and other quadrupeds). All

terms refer to an animal in a standing position (the anatomical position).

Figure A.4 graphically depicts each term below with respect to a horse’s

body.

Figure A.4: Terms to describe the position and relationships of body
segments of the horse. (Image taken from [193])

The following list of terms are used to describe the position of a particular

part of the body relative to the body itself:
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• Caudal: located towards the tail

• Cranial: located towards the head

• Distal: located away from the centre (the opposite of proximal)

• Dorsal: located towards the back or away from the ground

• Lateral: relating to the side, away from the body’s midline

• Medial: relating to the middle, towards the body’s midline

• Proximal: located towards the centre (the opposite of distal)

Often it is helpful to describe the positioning and movement of a body

part in relation to an imaginary plane cutting through the animal’s body

in the anatomical position. The commonly used planes are listed below:

• Frontal plane: perpendicular to the ground, divides the body into

front and back halves

• Median plane: passes through the middle of the body vertically,

dividing it into left and right halves

• Sagittal plane: passes through the body parallel to the median

plane

• Horizontal plane: passes through the middle of the body horizon-

tally, dividing it into top and bottom halves

• Transverse plane: passes through the body horizontally, parallel to

the ground, at right angles to the median plane
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A.4 Equine gaits

The description of quadruped gaits in Section 4.4.2 was introductory.

As well as its footfall sequence, a gait can be described in terms of its

variations (see Section 4.4.2), symmetry and rhythm.

Symmetrical gaits are referred to as being lateral if the legs on one

side of the animal move forward together. Conversely, in a diagonal

gait, legs diagonally opposite from each other move forward together.

Additionally, the walk is sometimes referred to as bipedal as one can

observe the front and back pairs of legs separately moving in a bipedal

manner (like a human).

Whilst it can be difficult for a human observing a horse in motion to

visually determine a footfall sequence, each gait has an audible rhythm.

The walk for instance has four footsteps at regular intervals. During the

trot diagonal pairs of limbs make contact with the ground at the same

time, producing only two audible beats per gait cycle. The canter and

gallop have three and four beats respectively but without the regular

timing displayed by the walk and the trot.

A more comprehensive list of the gaits used by horses is presented in

Table A.1 which is taken from [20]. In Table A.2 the most common horse

gaits are presented with specific value ranges for each of the following

characteristics: speed, stride length, stride frequency, limb stance phase

duration and suspension phase duration.
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A.5 Motions of the neck and back

During the walk, the head and neck make large balancing gestures. The

head tends to move up and down in a sinusoidal manner, with two similar

oscillations per stride [19].

When the horse is walking in a very relaxed manner, the neck tends

to be lowered. For a collected walk, the neck is raised and arched with

the head near vertical. In comparison, during an extended walk, the head

and neck are extended forward.

As in the walk, during the collected trot, the neck is raised and arched

with the head near vertical. In the fastest racing trot, both neck and

head are held very highly. The neck motion during the trot is a double

oscillation movement similar to the walk, with the head reaching its

highest point during the first half of each of the diagonal stance phases

[19].

For the remainder of this phase, the neck lowers down to near hori-

zontal bringing the head to its lowest point. During the suspension phase

and beginning of the next stance phase, the neck is raised again.

For asymmetrical gaits such as the canter and gallop, the balancing

motions required are different than that of the symmetrical gaits. During

these fast running gaits, the body tends to rock upwards and downwards

from the horizontal, as the hind and fore limbs impact the ground re-

spectively.

The head and neck move in coordination with the horizontal move-

ment of the body so the neck moves up and down in a sinusoidal manner,

but with only one oscillation per stride. If the horse is moving in the col-
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lected canter, the neck tends to be raised and arched with the head held

at near vertical. As the canter becomes extended the neck and head

extend forward also.

The gallop has neck motion similar to the canter, but as the gallop

is a naturally extended gait, and the neck and head make larger forward

and backward balancing gestures. Unlike the other common gaits, during

the pace the neck and head do not make any balancing gestures. Instead

the neck and head are held straight and high.
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Appendix B

Appendix B contains additional information pertaining to Part II.

This supplementary material contains detailed explanations and ac-

tual values relating to some of the sections in the horse model construc-

tion and gait motion data portions of this thesis.
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B.1 Model construction

In this section of Appendix B, supplementary information that relates to

Chapter 5 is presented.

B.1.1 Measured horse data

The mass and dimensional measurements in Table B.1 are taken from

[33] with a few exceptions.

The original length value for the head is measured from the head-neck

attachment point to a central point on the head [33]. This measured value

is extended to the length value indicated in the table to reflect the actual

length of a horse’s head. The length value indicated and the head’s radius

are estimates based on photographs and illustrations [77, 157, 81].

The radius value indicated for the neck is also an estimate based on

photographs and illustrations.

The mass and length values provided for the forelimb and hindlimb

are calculated from their constituent bone’s data. The mass values are

simply a summation. Each length value is a height value from the base

of the hoof to the top of the uppermost bone in each limb. In this case

the bones are positioned in a typical standing posture.

The values presented for the metacarpus and metatarsus have been

reduced by the exact height of the carpal and tarsal bones respectively;

these carpal and tarsal values were included in the overall measurements

of their respective bones [33].

For the purpose of constructing a physics-based model, the collection

of carpal and tarsal bones are not modelled. Instead a space between the
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bones on either side is included. This simplification emulates the shock

absorption effect of the carpal and tarsal bones.

The radii presented for both of the limbs are a roughly average bone

radius value based on illustrations [77].

The trunk has been divided into two segments based on images of a

horse’s skeleton.
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B.1.2 Data file format

The following is a description of the horse model construction input file.

Italicised words indicate user-specified input.

BODY
Model: any descriptive name
Segments: number
Facing: direction (LEFT or RIGHT)
KDFile: name of spring constant file

SegmentType: TRUNK
Name: TRUNK
Bones: number

SBONE name (parameters appropriate to bone)
. . . repeat bone definitions for number of bones . . .
TRUNKSEGMENTJOINT name articulation joins 1 joins 2 lo hi (lo1 hi1)
. . . include above joint if number of bones greater than 1. . .
. . . repeat joint definitions for number of joints . . .
END

SegmentType: NECKHEAD
Name: NECKHEAD
Bones: number

BONE TYPE name (parameters appropriate to bone)
. . . repeat bone definitions for number of bones . . .
INTRASEGMENTJOINT name articulation axis joins 1 joins 2 lo hi (lo1 hi1)
. . . repeat joint definitions for number of joints . . .
END

SegmentType: LIMB
LimbType: LIMB TYPE
Side: direction (LEFT or RIGHT)
Name: name
Bones: number

BONE TYPE name (parameters appropriate to bone)
. . . repeat bone definitions for number of bones . . .
INTRASEGMENTJOINT name articulation axis joins bone 1 joins bone 2 lo hi
(lo1 hi1)
. . . repeat joint definitions for number of joints . . .
END
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INTERSEGMENTJOINT name articulation axis joins segment 1 joins bone 1 joins segment 2
joins bone 2 lo hi (lo1 hi1) x y z
. . . repeat joint definitions for (number - 1) of segments . . .
END

END OF FILE

The following is an explanation of the variables found in the above file de-

scription.

number : a positive integer

direction: LEFT or RIGHT

LIMB TYPE : FORELIMB or HINDLIMB

name (LIMB): FORELIMBLEFT or FORELIMBRIGHT or HINDLIMBLEFT or

HINDLIMBRIGHT

BONE TYPE : SBONE or RBONE or FBONE

SBONE THORACIC mass value length value width value height value angle

RBONE BONE NAME mass value length value radius value angle

FBONE BONE NAME mass value radius value angle

name (BONE): a descriptive, unique name for this bone

name (JOINT): a descriptive, unique name for this joint

articulation: HINGE or UNIVERSAL

axis: location of rotation axis on bone-end surface: CENTRE or EDGE

joins bone 1 : the name of the first bone involved in the joint

joins bone 2 : the name of the second bone involved in the joint

joins segment 1 : the name of the first segment involved in the joint

joins segment 2 : the name of the second segment involved in the joint

lo: integer value (-π to π) defines joint’s lower angular limit

hi : integer value (-π to π) defines joint’s higher angular limit

lo1 : integer value (-π to π) defines joint’s lower angular limit (UNIVERSAL)
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hi1 : integer value (-π to π) defines joint’s higher angular limit (UNIVERSAL)

x : offset scalar, relative to the total length of the bone, in the x direction from

centre of first bone specifies joint attachment point

y : offset scalar, relative to the total height of the bone, in the y direction from

centre of first bone specifies joint attachment point

z : offset scalar, relative to the total width of the bone, in the z direction from

centre of first bone specifies joint attachment point
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B.1.3 Data file example

The following is an example of the model input file format and values

used for the horse models in this thesis.

BODY

Model: HORSE

Segments: 6

Facing: LEFT

KDFile: model_kd.txt

SegmentType: TRUNK

Name: TRUNK

Bones: 2

SBONE THORACIC 270.77 1.2 0.287 0.5208 0.0

SBONE SACRAL 81.23 0.36 0.4823 0.2604 0.0

TRUNKSEGMENTJOINT LUMBOSACRAL HINGE THORACIC SACRAL 0 0

END

SegmentType: NECKHEAD

Name: NECKHEAD

Bones: 3

RBONE PROXNECK 13.4 0.35 0.055 -35

RBONE DISTNECK 13.4 0.22 0.055 -50

RBONE HEAD 23.1 0.5 0.075 -120

INTRASEGMENTJOINT MIDNECK UNIVERSAL PROXNECK DISTNECK -180 180 0 0

INTRASEGMENTJOINT POLLAXIS UNIVERSAL DISTNECK HEAD -180 180 0 0

END

SegmentType: LIMB

LimbType: FORELIMB

Side: LEFT

Name: FORELIMBLEFT

Bones: 6

RBONE SCAPULA 11.5 0.548 0.03255 38.0

RBONE HUMERUS 8.6 0.25 0.03255 -40.0

RBONE RADIUS 6.7 0.434 0.03255 0.0

RBONE METACARPUS 1.59 0.287 0.03255 0.0

RBONE PASTERN 0.73 0.135 0.03255 36.0

HBONE HOOF 1.04 0.075 0.0

INTRASEGMENTJOINT SHOULDER UNIVERSAL SCAPULA HUMERUS -180 180 0 0

INTRASEGMENTJOINT ELBOW HINGE HUMERUS RADIUS -180 180

INTRASEGMENTJOINT CARPAL HINGE RADIUS METACARPUS -180 180

INTRASEGMENTJOINT FETLOCK HINGE METACARPUS PASTERN -180 180

INTRASEGMENTJOINT COFFIN HINGE PASTERN HOOF 0 0

END

SegmentType: LIMB

LimbType: FORELIMB

Side: RIGHT

Name: FORELIMBRIGHT

Bones: 6

RBONE SCAPULA 11.5 0.548 0.03255 38.0

RBONE HUMERUS 8.6 0.25 0.03255 -40.0

RBONE RADIUS 6.7 0.434 0.03255 0.0

RBONE METACARPUS 1.59 0.287 0.03255 0.0
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RBONE PASTERN 0.73 0.135 0.03255 36.0

HBONE HOOF 1.04 0.075 0.0

INTRASEGMENTJOINT SHOULDER UNIVERSAL SCAPULA HUMERUS -180 180 0 0

INTRASEGMENTJOINT ELBOW HINGE HUMERUS RADIUS -180 180

INTRASEGMENTJOINT CARPAL HINGE RADIUS METACARPUS -180 180

INTRASEGMENTJOINT FETLOCK HINGE METACARPUS PASTERN -180 180

INTRASEGMENTJOINT COFFIN HINGE PASTERN HOOF 0 0

END

SegmentType: LIMB

LimbType: HINDLIMB

Side: LEFT

Name: HINDLIMBLEFT

Bones: 5

RBONE FEMUR 18.6 0.36 0.03255 20.0

RBONE TIBIA 8.3 0.434 0.03255 -35.0

RBONE METATARSUS 2.84 0.353 0.03255 -9.0

RBONE PASTERN 0.89 0.141 0.03255 25.0

HBONE HOOF 1.04 0.075 0.0

INTRASEGMENTJOINT STIFLE HINGE FEMUR TIBIA -180 180

INTRASEGMENTJOINT TARSAL HINGE TIBIA METATARSUS -180 180

INTRASEGMENTJOINT FETLOCK HINGE METATARSUS PASTERN -180 180

INTRASEGMENTJOINT COFFIN HINGE PASTERN HOOF 0 0

END

SegmentType: LIMB

LimbType: HINDLIMB

Side: RIGHT

Name: HINDLIMBRIGHT

Bones: 5

RBONE FEMUR 18.6 0.36 0.03255 20.0

RBONE TIBIA 8.3 0.434 0.03255 -35.0

RBONE METATARSUS 2.84 0.353 0.03255 -9.0

RBONE PASTERN 0.89 0.141 0.03255 25.0

HBONE HOOF 1.04 0.075 0.0

INTRASEGMENTJOINT STIFLE HINGE FEMUR TIBIA -180 180

INTRASEGMENTJOINT TARSAL HINGE TIBIA METATARSUS -180 180

INTRASEGMENTJOINT FETLOCK HINGE METATARSUS PASTERN -180 180

INTRASEGMENTJOINT COFFIN HINGE PASTERN HOOF 0 0

END

INTERSEGMENTJOINT NECK UNIVERSAL SOCKET TRUNK THORACIC NECKHEAD PROXNECK -180 180 0 0 -0.5 0.5 0.0

INTERSEGMENTJOINT LEFTFORE HINGE EDGE TRUNK THORACIC FORELIMBLEFT SCAPULA -180 180 -0.45 0.45 0.5

INTERSEGMENTJOINT RIGHTFORE HINGE EDGE TRUNK THORACIC FORELIMBRIGHT SCAPULA -180 180 -0.45 0.45 -0.5

INTERSEGMENTJOINT LEFTHIND UNIVERSAL SOCKET TRUNK SACRAL HINDLIMBLEFT FEMUR -180 180 0 0 0.45 -0.5 0.5

INTERSEGMENTJOINT RIGHTHIND UNIVERSAL SOCKET TRUNK SACRAL HINDLIMBRIGHT FEMUR -180 180 0 0 0.45 -0.5 -0.5

ENDBODY

END_OF_FILE
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B.1.4 Physics-based model construction details

The following is a comprehensive description of the physics-based horse

model construction:

Forelimb

Construction of the forelimb begins with the hoof; a block with preset

mass and dimensions. The hoof is positioned sitting squarely on the

ground surface.

The end point of the pastern bone is positioned above the centre of

the top-right edge (lateral viewpoint with horse facing to the left) of the

hoof. The joint (coffin) is a hinge with the axis of rotation aligned along

that top-right edge of the hoof. Subsequent hinge joints in this limb are

also aligned along this axis. The point about which this joint rotates is

the centre point (the centre of the joint-end hemisphere) of the pastern.

The pastern is also shifted upward a small amount to prevent any friction

between the block corner and the capsule. All other limb joints avoid this

friction by the addition of the calculated offsets.

The end point of the metacarpus bone is positioned above the non-

connected end point of the pastern bone. A hinge joint (fetlock) rotates

about the centre point (as above) of the metacarpus bone.

The end point of the radius is set above the non-connected end point

of the metacarpus, with a gap between the two. This gap represents the

carpal bones; a cluster of bones between the radius and the metacarpus.

To simplify the simulation, these bones are not modelled. The gap in-

serted in their place functions similarly to the carpal bones in that it
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allows some rotation and provides some shock absorbance. A hinge joint

(knee) rotates about the end point of the radius.

The end point of the humerus is positioned above the non-connected

end point of the radius with a hinge joint (elbow) rotating about the

humerus’ centre point.

The end point of the scapula is positioned above the non-connected

end point of the humerus. The ODE universal joint (shoulder), a con-

strained ball and socket joint, rotates about the centre point of the

humerus’ connecting end.

With the exception of the shoulder, all of the above mentioned joints

rotate about the same axis essentially constraining all movement of the

bones to the sagittal plane.

In a real horse, the forelimb can move laterally as well as backwards

and forwards. This lateral movement can be attributed to the scapula

pulling towards and pushing out from the centre of the animal. As men-

tioned previously, the forelimbs are attached to the body via a sling of

muscles. Although this would be possible to model, it would be nontrivial

and computationally costly.

A simpler solution is to attach the top of the scapula to the trunk

with a universal joint. Attaching the legs in this manner provides an

additional degree of freedom with the adduction and abduction of the

scapula allowing the entire leg to move laterally.

Hindlimb

As with the forelimb, construction of the hindlimb begins with the hoof.

The end point of the pastern bone is positioned above the centre of the
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top-right edge (lateral viewpoint with horse facing to the left) of the hoof.

The joint (coffin) is a hinge with the axis of rotation aligned along that

top-right edge of the hoof. The angle of the pastern is more vertical in

the hindlimb than in the forelimb.

Subsequent hinge joints in this limb are also aligned along this axis.

The point about which this joint rotates is the centre point of the pastern.

As with the forelimb, friction and unwanted collisions are avoided by

inserting a small buffer space and the use of offsets.

The end point of the metatarsus bone is positioned above the non-

connected end point of the pastern bone. A hinge joint (fetlock) rotates

about the centre point of the metatarsus bone. The equivalent bone in the

forelimb, the metacarpus, is positioned vertically in the standing position.

The metatarsus is positioned slanting slightly towards to animal’s head.

The end point of the tibia is set above the non-connected end point

of the metatarsus. As with the forelimb, a gap is left between the tibia

and metatarsus representing the tarsal bones. These tarsal bones behave

similarly to the carpal bones and again are not explicitly modelled. A

hinge joint (hock) rotates about the end point of the tibia.

The end point of the femur is positioned above the non-connected end

point of the tibia with a hinge joint (stifle) rotating about the femur’s

centre point.

In terms of bones, the hindlimb has a similar makeup to the forelimb,

however, the hindlimb has no equivalent bone to the forelimb’s scapula.

The femur of the hindlimb attaches by a ball and socket joint to the

hipbone, modelled in ODE as a universal joint.
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The femur rotates about the centre point of its connecting end. A

slight gap between the hip and the femur prevents unwanted collisions

and friction. This gap is analogous to the lubricating fluid found in a

ball and socket joint.

As with the forelimb, the series of aligned hinge joints throughout the

lower limb constrain the limb’s movement to the sagittal plane. The ball

and socket joint (universal) at the hip allows for lateral movement.

Trunk

The trunk of the model is composed of two parts, the thoracic segment

and the sacrum.

This is a simplification of a real horse skeleton, however, the behaviour

of the simplified model will not differ hugely from the behaviour of the

real animal’s body. The vertebrae in a horse’s spine do not flex a large

amount from the neck to a point before the tail, therefore it is acceptable

to model this segment as a single rigid body.

The thoracic segment has the forelimbs attached on either side. The

width and depth of the segment is estimated from the sources named in

Chapter 5.

The main flexibility found in a horse’s back is at the lumbosacral

joint, located close to the rear of the horse. This joint enables the horse

to “tuck” its hindquarters underneath its body to a small degree. This

action is useful for tight maneuvering, turning and for gaining extra power

during a gallop.

The lumbosacral joint connects the thoracic segment to the sacrum

which has the hindlimbs connected to its underside at the hip. This is
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in contrast to the forelimbs which connect to the sides of the thoracic

segment. The sacrum is therefore wider than the thoracic segment to

accommodate the underside connection.

Neckhead

The positioning and movement of the neck and head has a major impact

on the balance of the model.

The neck of the horse is made up of the cervical vertebrae. Like the

tail, modelling many vertebrae and their connecting joints may prove

difficult and computationally expensive. The neck is therefore simplified

to just two articulated bones, as shown in Figure 5.1 of Section 5.1.2.

This proximal neck bone is attached to the thoracic segment via a

universal joint which allows for both vertical and lateral movement of

the neck. A distal neck bone is then attached to the proximal neck bone

at a universal joint named the midneck joint.

At the distal end of the distal neck bone, the head is attached. In

a horse, the two cervical vertebrae nearest the head are called the atlas

and axis bones. These bones allow vertical and lateral rotations respec-

tively. In this implementation, the bone representing the head is simply

attached to the distal neck bone by a universal joint, emulating the free-

dom provided by the atlas and axis.

Positioning everything

In this implementation, there is a particular sequence of positioning and

repositioning followed to ensure that all bones and segments are located

correctly.
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The hindlimbs are positioned first in a two-step process. The hindlimb

is initially constructed at some arbitrary position, the origin for example,

so that an offset can be calculated and used to position the limb at correct

location underneath the sacrum.

Firstly the hooves are placed an appropriate space apart, determined

by the width of the thoracic segment of the trunk. The other bones of the

hindlimbs are then positioned in sequence above the hoof as previously

described.

When all of the bones are connected, the global position of the centre

of the hoof and the position of the attachment point on the tip of the

femur are compared. The distance between the x-axis values of these

two points is found (the x-axis lies parallel to the ground surface in the

direction the horse is facing).

This offset is then used to reposition the hoof so that the tip of the

femur lines up with the desired attachment point on the base of the

sacrum.

Before the limb is joined to the sacrum segment, the trunk itself

must be positioned. The limbs are positioned on the ground according

to the dimensions of the trunk. The height at which the trunk is posi-

tioned is determined by the height of the topmost attachment point of

the hindlimbs. Once the trunk is positioned at the appropriate height,

the hindlimbs are attached to the underneath of the sacrum.

The forelimbs are positioned using the same two-step approach as the

hindlimbs. Once positioned, the forelimbs can be attached to wherever

the top of the scapula and thoracic segment of the trunk meet.
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B.1.5 Open Dynamics Engine settings

Table B.2 lists the Open Dynamics Engine (ODE) parameter values used

in all relevant experiments. An explanation of each parameter listed can

be found in the ODE user manual [180].

Table B.2: ODE parameter settings.
Parameter Value

Acceleration due to gravity 9.81
Error reduction parameter (ERP) 0.2
Constraint force mixing (CFM) 0.0001
Maximum correcting velocity Infinity

Contact surface 0.0001
Timestep 0.0005

Contact friction infinity
Force dependent slip in force direction 1 0.005
Force dependent slip in force direction 2 0.005

Soft ERP 0.5
Soft CFM 0.0
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B.2 Gait

In this section of Appendix B, supplementary information that relates to

Chapter 6 is presented.

B.2.1 Gait patterns

Gait pattern data values for the natural gaits are consistent across the

literature [19]. Example values are presented in Table B.3.

Table B.3: Gait patterns: limb phase differences are shown as a percent-
age of a gait cycle.

Gait Forelimb left Forelimb right Hindlimb left Hindlimb right

Walk 0 50 75 25

Trot 0 49 55 6

Canter 0 80 80 50

Gallop 0 10 50 60
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B.2.2 Forelimb motion data plots

The following plots are taken from [17].

Figure B.1: Mean joint-angle-time diagrams of the forelimb of a group
of horses trotting on a treadmill (4 m/s). Data are presented as mean
±SD (...). The horizontal zero line indicates the joint angle of the square
standing horse. The vertical dashed line marks the transition from stance
to swing (re: retraction; pro: protraction; flex: flexion; ext: extension).
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B.2.3 Hindlimb motion data plots

The following plots are taken from [18].

Figure B.2: Mean joint-angle-time diagrams of the hindlimb of a group
of horses trotting on a treadmill (4 m/s). Data are presented as mean
±SD (...). The horizontal zero line indicates the joint angle of the square
standing horse. The vertical dashed line marks the transition from stance
to swing (re: retraction; pro: protraction; flex: flexion; ext: extension).
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B.2.4 Forelimb motion data tables

The following tables are taken from [17] and relate to the plots presented

in Appendix Section B.2.2.

Scapula
Shoulder

Elbow
Tarsus

Fore Fetlock
Fore Coffin

Figure B.3: Tables featuring forelimb joint-angle motion values taken
from [17]. Curve values indicate a distinctive feature that defines a
curve’s shape (i.g.c.: initial ground contact).

360



B.2.5 Hindlimb motion data tables

The following tables are taken [18] and relate to the plots presented in

Appendix Section B.2.3.

Hip Stifle

Hock Hind Fetlock

Hind Coffin

Figure B.4: Tables featuring hindlimb joint-angle motion values taken
from [18]. Curve values indicate a distinctive feature that defines a
curve’s shape (i.g.c.: initial ground contact).
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B.3 Manual motion data generation

In this section of Appendix B, supplementary information that relates to

Chapter 7 is presented.

B.3.1 MDDE data input files

The MDDE requires that the following data be supplied in simple input

files:

Model a file containing model construction data, such as that discussed

in Section 5.3.1 and provided in Appendix Section B.1.3

Spring-damper values a set of spring-damper coefficients that pertain

to the physics-based model, as introduced in Section 5.3.3

Gait patterns the limb motion phase values for each of the natural

gaits, as presented in Appendix Section B.2.1

Motion data the set of data that describes the motion of each bone in

the model, for each gait

The motion data is supplied in the discrete value representation dis-

cussed in Section 6.2. For each gait, each bone’s rotation over a single

gait cycle must be defined by a set of 20 angular values.
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Appendix C

Appendix C contains additional information pertaining to Part III.

This supplementary material contains information relating to some

of the experimental portion of this thesis.
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C.1 Physics-based motion optimisation

In this section of Appendix C, supplementary information that relates to

Chapter 8 is presented.

C.1.1 Motion data phenotype format

The following is a description of the summation of sinusoids motion data

file format. This format is used by the physics-based horse model fitness

function and animation system.

The capitalised words are keywords which describe the file content:

• The GAIT keyword identifies this as a gait motion data file rather

than a transition motion data file (TRANSITION).

• The SIN keyword indicates that the data in the file is in the summa-

tion of sinusoids representation. The other possible representation

is piecewise, indicated by the PIECE keyword.

• The SYM keyword denotes the symmetry of the data in the file.

SYM stands for symmetrical meaning that a single definition of

forelimb and hindlimb motion is used for both of the forelimbs and

hindlimbs. An asymmetrical file (ASYM) includes separate data

for all limbs in the body, thus requiring twice as much data.

The italicised words are replaced by data in the summation of sinu-

soids representation. Both symmetrical and asymmetrical file formats

are shown:
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GAIT

SIN

SYM

scapula

humerus

radius

metacarpus

pastern (fore)

femur

tibia

metatarsus

pastern (hind)

proximal neck

distal neck

head

ENDGAIT

END OF FILE

GAIT

SIN

ASYM

scapula (left)

humerus (left)

radius (left)

metacarpus (left)

pastern (fore-left)
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scapula (right)

humerus (right)

radius (right)

metacarpus (right)

pastern (fore-right)

femur (left)

tibia (left)

metatarsus (left)

pastern (hind-left)

femur (right)

tibia (right)

metatarsus (right)

pastern (hind-right)

proximal neck

distal neck

head

ENDGAIT

END OF FILE
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